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Abstract. We present a novel explanation of why organizations tend to lose their agility
over time despite their efforts to foster worker initiative in adapting to local informa-
tion. Worker initiative ensures efficiency but requires strong incentives. When incen-
tives are relational and the firm faces shocks to its credibility, it may adopt standardized
work processes that ignore local information but yield satisfactory (though suboptimal)
performance. The adoption of such standardized processes helps the firm survive the
current shock but inflicts inefficiencies in the future. Although the firm may recover, it
becomes more vulnerable to future shocks, and consequently, more reliant on the stand-
ardized work procedures.
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1. Introduction
Management scholars and practitioners alike routinely
promote the virtues of worker empowerment. An em-
powered worker can generate large benefits for the
firm by taking initiative and adapting his actions to
local (and new) information that the top management
need not be aware of. “Empowerment in many ways is
the reverse of doing things by the book” (Zemke and
Schaaf 1989, p. 68), and to encourage workers to take
initiative, firms often keep their work rules vague with
little or no stipulations on how the workers should
carry out their job responsibilities.

Nordstrom, a leading departmental store chain based
in the United States, offers a classic example of such lack
of rules. For years, Nordstrom’s employee handbook
simply stated “Our number one goal is to provide out-
standing customer service. Set both your personal and
professional goals high [… .] Nordstrom Rules: Rule #1:
Use good judgment in all situations. There will be no
additional rules” (Spector andMcCarthy 2012).

However, even thefirms that insist onworker initiative
as key to their success may succumb to rule-based work.
Many organizations tend to lose their ability to adapt to a
changing environment as standardized work processes
get entrenched over time, and such inertia undermines
their overall performance and innovation capabilities
(Hannan and Freeman 1984, 1989; Henderson and Clark
1990, Kelly and Amburgey 1991, Amburgey et al. 1993,
Henderson 1993, Ruef 1997, de Figueiredo et al. 2015).

A standardized work process can be conceived as a
broad set of instructions from the top management to
the employees usually designed to ensure a required
level of performance in a typical production scenario.
For example, consider the case of a large international
airline as reported by Hackman (2002). The airline
management relied on market analysts and workflow
experts to meticulously design a cabin product and
in-flight delivery routine for a satisfactory customer
service. Themanagement also “conducted rigorous train-
ing programs to ensure that every flight attendant under-
stood both the airline’s service objectives and the specific
procedures to be used to achieve them” (p. 5). However,
these procedures were tailored for a “typical flight” and
left little room for the crew to adapt to the special circum-
stances of a given flight. Although the routines worked
fine most of the time, they did not always yield a high
level of customer satisfaction, and the company found
itself trailing competitors in service innovations. Nicker-
son and Zenger (2002) report a similar case in the early
1990s at the Ford Motor Company. Grappled with run-
away production costs, Ford responded by curbing its
regional managers’ autonomy over product design and
centralizing its engineering andmanufacturing decisions.
Ford’s actions led to significant cost savings, but the
company also lost market share as the new designs
were poorly adapted to local tastes. In fact, recognizing
such adaptation problems, Ford subsequently decided
to restore the autonomy of its local regional managers.
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As these examples suggest, a standardized process
can provide a guideline to the workers on how to
deliver an adequate level of performance in a routine
setup, but it may entail production inefficiencies due to
its lack of responsiveness to local information. Although
this static tradeoff is well documented, we highlight
that the adoption of a standardized work process may
also involve an intertemporal tradeoff with incentive
provision as we nowdescribe.

It may be easier to incentivize the workers to follow a
standardized work process than to adapt to their local
information (Holmström 1984; Bowen and Lawler 1992;
Alonso and Matouschek 2007; 2008). Conceivably, it is
less costly for the workers to execute a prespecified set
of procedures than to continually acquire information
about local conditions and then use their judgment
to ascertain the appropriate action (and modify their
conduct accordingly). Thus, in times of crisis when the
organization may lack the credibility to offer strong
incentives to induce adaptation, the adoption of a
standardized process can be an effective coping strat-
egy. Indeed, in periods of crisis, a typical response of
the top management is to take back the discretions
given to its divisional managers and implement new
work rules that the employees are urged to follow (Slat-
ter and Lovett 1999).

However, once such standardized processes are
developed and put in place, it becomes more difficult
to incentivize the workers to take initiative in the
future. When the firm again urges its workers to adapt
their actions to the situation at hand, they may be
tempted to follow the standardized procedure instead
(Cyert and March 1963, Williamson 1999). Because the
standardized procedure performswell in a routine sce-
nario, theworkers now know that if they simply follow
the procedure instead of adapting to their local infor-
mation, they may still be able to deliver a good per-
formance and their deviation would go undetected.1

To prevent such a deviation, the firm could attempt to
make the standardized process inaccessible or ineffec-
tive when it is no longer needed. However, barring sig-
nificant changes to the firm’s production technology
this option may not be feasible, and it could be difficult
to prevent the workers from using work processes that
they had learned (and were trained to follow) in the
past. Unsurprisingly, the airline studied in Hackman
(2002) confronted a similar problem. When the airline
management subsequently relaxed the guidelines and
encouraged the workers to take initiative to achieve a
higher level of customer satisfaction, it found the crew
to be disinclined to go beyond the standard procedure
that had become ingrained in the organization.2

We analyze how this tradeoff shapes the optimal
incentive contract and explore its dynamic implications
for the organizational agility. We show that the height-
ened incentive problem makes the organization more

fragile to future shocks and erodes its agility over time:
the organization ends up using such standard proce-
dures too frequently as it gets harder to sustain the
adaptive work mode in the future. Thus, although the
adoption of a standardized work process can help
the firm survive the current crisis, it may put a strain on
the value of the on-going relationship and undermines
its future performance.

The example of Hewlett-Packard Company speaks
to our key findings. Hewlett-Packard, from its incep-
tion through early 1980s, was known for the so-called
“HP Way” where the divisional managers were highly
autonomous, and the employees were strongly encour-
aged to take initiative on issues that advanced the
firm’s goals. However, in the 1980s, following a gradual
decline in its stock performance, the company adopted
a more centralized mode of operation where the man-
agers’ autonomy was curtailed, and standardization
of processes and products was emphasized. Neverthe-
less, within a decade HP again decentralized its opera-
tions, increasing worker autonomy to promote local
initiatives and innovation. However, its decentralized
structure did not persist for long, and the company con-
tinued to oscillate between the two organizational
modes (Nickerson and Zenger 2002, House and Price
2009).3

We formalize this argument by using a model of
relational contract between a firm and a liquidity-
constrained worker.4 In every period, the worker pri-
vately takes an action to perform his job. Production
efficiency requires the worker to adapt his action to the
underlying circumstances to guarantee a high output.
However, the firm can also put in place a standardized
work process that can yield high output with some
probability even if the worker ignores the underlying
state of the world and simply follows the stipulated
work process. Such a “rigid” action (i.e., doing things
as per the standard process) is less costly to the worker
than the efficient “adaptive” one. In line with our ear-
lier discussion, we assume that once the rigid action
is made available, the worker can always use it in the
future, even when the costly adaptive action is called
for. The firm promises the worker a discretionary
bonus tied to his performance as a relational contract.
However, in every period, the firm may privately face
a liquidity shock and fail to pay the worker due to a
lack of funds. The dynamics of the optimal contract
stems from such exogenous shocks as they undermine
the firm’s credibility, and, consequently, its ability to
offer relational incentives.

We show that the optimal relational contract exhibits
a dynamics that goes through three distinct phases. At
the beginning of the relationship, the firm incentivizes
theworker to take initiative and theworker chooses the
adaptive action. The firm earns the maximum feasible
payoff by appropriating all rents. However, if there is a
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liquidity shock, the firm cannot pay the worker and is
forced to renege on its promise. Because the shock is
privately observed by the firm, the worker must pun-
ish the firm when it fails to pay, and the firm is
required to transfer some of the future surplus to the
worker. As a result, the firm’s stake in the relationship
goes down and its credibility depletes. If the shocks
are not too severe, the firm continues to encourage
worker initiative. Once the shock passes and the firm
makes good on its promise, the relationship recovers
completely: the players’ payoffs immediately revert to
what they were at the beginning of the relationship.

However, if there are too many consecutive shocks
the crisis leads to a significant loss of credibility for the
firm, and the relationship moves to its second phase. At
the beginning of this phase, the optimal contract calls for
the standardizedwork process. The firm implements the
standardized work process and asks the worker to take
the rigid action. Because the rigid action is less costly
to the worker than the adaptive one, it can be induced
with relatively weaker incentives. Once the shock passes
and the firm pays its promised reward, credibility is
restored, and theworker is again asked to take the adap-
tive action. Hence, as the firm’s credibility evolves in
response to shocks, the firm oscillates between fostering
worker initiative and requiring adherence to rules.

However, once the standardized work process is put
in place, the nature of the relationship changes: the
relationship becomes less efficient and more vulner-
able to future shocks. As discussed earlier, after the
introduction of the standardized process, it becomes
more difficult to encourage the worker to take initia-
tive in the future. When discretion is given back to the
worker, he can now deviate and take the cheaper rigid
action instead of the adaptive one (that is more costly).
Thus, if the firm were to induce the adaptive action
again, stronger incentives are needed, and it must offer
rents to the worker. But as the worker earns a rent, the
firm’s value of the relationship decreases. Conse-
quently, the worker’s trust in the firm deteriorates, and
so does the relationship’s ability to endure future
shocks. It becomesmore likely that the rigid action will
be used (and the relationship may even terminate) if
shocks arise in the future; the onset of such organiza-
tional rigidity depletes the joint surplus in the relation-
ship even after the relationship recovers from the
current shock.

Further shocks, if sufficiently severe, move the rela-
tionship to its final phase, where the firm’s value of the
relationship becomes so low that the firm cannot even
credibly offer the incentives needed to elicit the rigid
action. At this point, the relationship is terminated.

The dynamics of the optimal contract brings to the
fore two novel aspects of the use of standardized
work processes. First, although such processes help
the relationship in times of stress, the resulting strain

inflicts a cost on the relationship’s future. Even after the
firm regains its credibility and gives back discretion to
the worker, the relationship continues to bear the scars
of past shocks and never recovers completely: whereas
the relationship may appear to revert to its initial form
(with the worker again taking the adaptive action), it
endures a structural change as it becomes more prone
to organizational rigidities when the shocks arise again
in the future.

Second, a standardized work process may also be
introduced as a precautionary measure, even when the
incentives forworker initiative (i.e., the adaptive action)
are still feasible. This is because shocks are more dam-
aging to the relationship when the worker is urged to
take the adaptive action. Because the adaptive action
requires stronger incentives, the firm must promise a
larger reward, and this promise is only credible if the
firm is punished severely if it reneges. Thus, when
shocks arise, the firm’s stake in the relationship erodes
faster, and so does its credibility with the worker.
Standardization slows the relationship’s decay caused
by future shocks because the rigid action requires
weaker incentives; for such incentives to be credible,
punishments need not be too harsh. As a result, the
relationship can survive a longer spell of consecutive
shocks before it must face termination.

Although we illustrate the long-term implications of
standardized work rules by using a model of employ-
ment relationship, one may consider several other con-
tractual settings where similar dynamics can emerge.
Indeed, a key aspect of our argument (i.e., the erosion of
the relationship’s value may necessitate the adoption
of standardized work practices) may be applicable in
other related environments. For example, in relation-
ships between firms such as supply chains and joint ven-
tures, production efficiency may require that the parties
have flexibility to respond to local information. Conse-
quently, it may not be optimal to stipulate a rigid work
process if the parties can be incentivized to adapt and
respond to underlying circumstances appropriately.
However, if the value of the relationship decreases,
incentives for adaptation may not be feasible, and the
parties may optimally stipulate rules that can still elicit a
moderate level of effort and arrest the decay of the rela-
tionship. However, our findings highlight that the intro-
duction of such standardized processes would inflict a
long-term cost on the relationship. Once the parties stip-
ulate rules and procedures that can deliver an adequate
level of performance in a typical setting, it becomes
harder to incentivize them to go beyond the rules in the
future, and the aggravated incentive problem makes the
relationshipmore vulnerable to future shocks.

1.1. Related Literature
It has been long recognized that the economic agents,
when free from strict control by rules, can enhance
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production efficiency by adapting their actions to
decision-relevant information that resides locally (Hayek
1945). However, the economics and the management lit-
erature point to various reasons why the firms may still
resort to rule-basedwork and succumb to organizational
rigidities. Work routines may minimize misunderstand-
ing and facilitate coordination (Nelson andWinter 1982);
adherence to norms can effectively guide behavior and
reaffirm reputation in unforeseen circumstances (Kreps
1990); and rigidities can also emerge from the political
frictions within the organization (de Figueiredo et al.
2015), as the managers may choose to exploit existing
business opportunities rather than explore new ones
so as to protect their current rents (Holmström 1989,
Henderson 1993, Schaefer 1998; also see Garicano and
Rayo 2016 for a survey).

We contribute to this literature by offering a novel
explanation why organizations become more rigid
over time despite their efforts to remain flexible. In
particular, we highlight how the adoption of new rules
may inflict a dynamic cost on the organization and
make it harder for the firm to adapt its established rou-
tines in the face of environmental changes.

Our paper also contributes to a growing literature
on the dynamics of employment relationships. Models
of relational contracts have been used to show how
relationships may improve over time as parties learn
to coordinate more effectively (Watson, 1999, 2002;
Chassang 2010; Halac 2014). Cooperation may also
deteriorate due to a worsening production environ-
ment (Garrett and Pavan 2012, Halac and Prat 2016)
or inefficient allocation of authority that emerges as a
compromise for past events (Li et al. 2017). Finally,
relationships can cycle between phases of reward and
punishment when parties may have private informa-
tion (Li and Matouschek 2013, Zhu 2013, Fong and Li
2017).

In our model, the relationship also oscillates between
using an adaptive action and a rigid one, but the rigid
action ushers in a structural change when it is first intro-
duced; once this action is made available, the future
surplus in the relationship is irrecoverably compro-
mised. This feature of our model also necessitates a
novel methodological approach. Typically, the relational
contractingmodels of employment dynamics rely on the
standard recursive method from Abreu et al. (1990) to
characterize the equilibrium payoff set. However, such a
method cannot be directly used in our setting as the
introduction of the rigid action expands the agent’s
action set, and the timing of its introduction is also
endogenous to themodel. In particular, the characteriza-
tion of the equilibrium payoff set prior to the introduc-
tion of the rigid action must account for two important
issues: first, the equilibrium payoff set depends on the
(optimal) timing of the introduction of the rigid action,
and second, the recursive structure of the equilibrium

payoff set is affected by the fact that the continuation
payoffs may reside in a different payoff set—one that is
associated with the game when the rigid action is
already available.5

The tradeoffs with standardization and initiative
that we explore are reminiscent of a few related strands
of literature in organizational economics. First, the lit-
erature on the relative merits of decentralization and
centralization also speaks to the value of rule-based
work (as rules are often formulated as a part of a cen-
tralized decision-making process). This literature high-
lights a tradeoff between coordination and adaptation:
Centralization facilitates coordination between differ-
ent divisions of an organization (Chandler 1977) but
impedes adaptation to local information. Relatedly,
several authors have studied how the junior managers
may be incentivized to obtain local information and
accurately report it to the top management (Aghion
and Tirole 1997; Alonso et al. 2008; Rantakari, 2008;
2012; also see Gibbons et al. 2012 for a survey).

Second, there is a vast literature on the interaction
between formal and informal incentives that assumes
that the agent’s private action is reflected inmultiple per-
formance signals, some of which are verifiable and some
ofwhich are not (Baker et al. 1994, Schmidt and Schnitzer
1995, Che and Yoo 2001, Kvaløy and Olsen 2009). The
optimal incentive scheme, therefore, combines court-
enforceable incentive contracts with relational incentives
sustained through repeated interactions. In our setting, a
standardizedwork processmay be conceived as a formal
guideline to the agent. However, we assume that court-
enforceable contracts are infeasible regardless of whether
such guidelines are used or adaptation is encouraged,
and the dynamics of worker initiative is driven by the
dynamics of the optimal relational contract.

Finally, our analysis may also remind the reader of
the literature on strategic ambiguity or opacity in con-
tract design that explores how such ambiguities may
help to sharpen the agents’ overall work incentives
(Bernheim and Whinston 1998, Ederer et al. 2018). In
our setting, when the firm leaves the work rules vague
and refrains from stipulating any work process to
encourage worker initiative, one may interpret this
choice as one where the firm resorts to strategic ambi-
guity to enhance production efficiency. The focus of our
paper, however, is on the dynamics of the use of such
standardized work rules in the optimal relational con-
tract and its implications for the organizational agility.

2. Model
A principal (or “firm”) hires an agent (or “worker”)
where the two parties enter in an infinitely repeated
employment relationship. (In what follows, we will
use the pronoun “she” to refer to the principal and the
pronoun “he” to refer to the agent.) Time is assumed
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to be discrete and denoted as t ∈ 1, 2, : : : ,∞{ }: In each
period, the principal and the agent play a stage game
that is defined as follows.

2.1. Stage Game
We elaborate on the stage game by describing its three
key components: Technology, contracts, and payoffs.

2.1.1. Technology. The agent (privately) takes an
action at ∈ aA,aR,aS{ } to perform a job with output
Yt ∈ −z, 0,y{ }

. We label aA and aR as the “adaptive” and
“rigid” action, respectively. The action aA always
yields high output (i.e., Yt � y if at � aA), whereas the
action aR yields high output (Yt � y) with probability
p ∈ 0, 1( ) and low output Yt � 0( )with probability 1− p.
The agent incurs a cost of action c at( ) where c(aA) � C
and c(aR) � c, and C > c > 0. Finally, the agent may also
shirk by choosing a costless action aS that leads to con-
siderable damage to the firm and yieldsYt � −z.

The adaptive action may be conceived as one where
the agent takes initiative and tailors his work proce-
dure to an underlying state of the world (i.e., his “local
information”) that affects production. The rigid action,
in contrast, entails following a standardized work
process that is invariant to the underlying state of the
world. Consequently, it does not always yield a high
output but it is less costly for the agent to undertake.

We assume that the rigid action becomes available to
the agent only if it is introduced by the principal. The
principal can introduce the rigid action (i.e., establish
the standardized procedure) at zero cost, but once it is
introduced it always remains available to the agent in
the future. Although the agent’s action is his private
information, the output Yt is publicly observable,
although nonverifiable. We denote the availability of
the standard procedure as γt ∈ 0, 1{ }, where γt � 1 if a
procedure has been put in place and γt � 0 otherwise.

Our assumptions on the technology intend to cap-
ture the trade-off that adaptation can deliver a higher
value compared with a standardized process, but it is
more costly to implement. In addition, as discussed in
Section 1, the formulation and implementation of an
effective standardized process may require expert anal-
ysis and training that the individual workers cannot
accomplish by themselves. However, once introduced,
it may be difficult to make it completely inaccessible to
the workers unless the production technology is signifi-
cantly altered.6

2.1.2. Contract. In each period t, the principal decides
on whether to offer the agent a contract. The contract
consists of an offer to engage in production and a con-
tingent compensation (described later). Let dPt ∈ 0, 1{ }
denote the principal’s offer decision where dPt � 0 if no
offer is made and dPt � 1 otherwise. The principal also

decides whether to put in place a standardized work
process at the beginning of the period if it has not
been done in the past.

As the job output Yt is nonverifiable, explicit pay-
per-performance contracts are not feasible. Instead, the
principal offers a relational contract that specifies a dis-
cretionary bonus bt that depends on Yt. The agent is
liquidity constrained, and bt must be nonnegative. We
assume that the principal’s ability to pay the agent is
stochastic as she may be exposed to a liquidity shock.
In absence of any shock the opportunity cost of a dollar
is a dollar, whereas if there is a shock, the opportunity
cost is prohibitively high and the principal cannot
make any payments to the agent. Let ρt ∈ S,N{ } be the
realization of the liquidity shock in period t, where
ρt � S if there is a shock and ρt �N if there is none.
We assume that ρt is identically and independently
distributed across periods and Pr ρt � S

( ) � θ ∈ 0, 1( ).
The liquidity shock is privately observed by the princi-
pal after the realization of the output. As the principal
cannot pay the agent anything if there is a liquidity
shock, the agent’s compensation does not include any
contractual wage component.7

Upon receiving the contract offer, the agent decides
whether to accept it or not. Let dAt ∈ 0, 1{ } denote the
agent’s decision where dAt � 0 if the offer is rejected
and dAt � 1 if it is accepted. Upon accepting the offer,
the agent decides on his action at.

Finally, we assume that there is a public randomiza-
tion device, generating a realization xt ∈ 0, 1[ ] at the
end of the period. We may assume that the public ran-
domization device is also available at the beginning of
the game.

The timing of the stage game is summarized here.
• Beginning of Period t. The principal decides whether

to offer a contract to the agent. If a contract is offered,
the principal also decides on whether to establish the
standardized work process (if the process has not been
set up yet) and the game moves to period t:1. If no con-
tract is offered, the gamemoves to period t + 1.

• Period t:1: The agent either accepts or rejects the
contract offered by the principal. If he accepts, the
game moves to period t:2. If he rejects, the games
moves to period t + 1.

• Period t:2: The agent chooses the action at. If a
standardized procedure is in place at ∈ aA, aR, aS{ } and
if it is not at ∈ aA,aS{ }.

• Period t:3: The output Yt is observed.
• Period t:4: The principal privately observes the

liquidity shock ρt.
• Period t:5: The principal decides on the bonus pay-

ment. A bonusmay be paid if there is no shock.
• End of Period t. The outcome of the randomization

device xt is realized and the game moves to period
t + 1.
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2.1.3. Payoffs. The principal and agent are risk neu-
tral. If either dPt or dAt is zero, both receive their outside
options in that period—which we assume to be zero
for both—and the game moves on to period t+1. If
dAt � dPt � 1, for a given action action at of the agent,
the agent and the principal earn

ût � E 1 ρt�N{ }bt Yt( ) | at
[ ]

− c at( )
and

π̂t � E Yt − 1 ρt�N{ }bt Yt( ) | at
[ ]

,

respectively, where the expectation is taken using the
distribution of ρt andYt conditional on at.

2.2. Repeated Game
The stage game described previously is repeated every
period, and both the agent and the principal have a
common discount factor δ ∈ 0, 1( ): At the beginning of
any period t, the normalized payoffs of the players in
the continuation game are given as

ut � 1− δ( )∑∞
τ�t

δτ−tdτûτ and πt � 1− δ( )∑∞
τ�t

δτ−tdτπ̂τ,

where dτ :� dAτ d
P
τ .

As standard in the literature (Levin 2003), we define
a relational contract as a pure strategy perfect public
equilibrium (PPE), where the players only use public
strategies, and the equilibrium strategies induce a
Nash equilibrium in the continuation game starting
from each public history. A public strategy of the prin-
cipal stipulates her participation decision, decision on
whether to put in place the standardized work proce-
dure, and decision on the bonus payment in each
period as a function of the public history of the game.
Similarly, a public strategy for the agent stipulates his
participation and action decisions in each period given
the public history.We define an optimal relational con-
tract as a PPE of this game that maximizes the princi-
pal’s payoff.

In what follows, we maintain a few restrictions on
the parameters to focus on a more interesting model-
ing environment.

Assumption 1. The parameters of the model satisfy
the following restrictions: (i) y−C > py− c > 0; (ii)

pC > c; (iii) 1− δ( ) 1− p
( )

> δpθ and y >max 1
δ 1−θ( ) ,
{

1−δ
1−δ( ) 1−p( )−δpθ

}
K, where K :� C− c( ) − δ 1−θ( ) pC− c

( )( )
=

1− p
( )

; and (iv) z > δ
1−δ y−C

( )
.

Assumption 1(i) ensures that the adaptive action
aA( ) is more efficient than the rigid one aR( ), which is,
in turn, more efficient than dissolving the employment
relationship. Parts (ii) and (iii) ensure that both the adap-
tive and the rigid actions are used on the equilibrium

path, and the optimal relational contract gives rise to a
rich set of dynamics. Part (ii) requires the adaptive action
to be sufficiently more costly than the rigid action,
whereas part (iii) stipulates that neither δ nor p is too
large, and when the job is successfully completed, the
value of the output is sufficiently high (the term on the
right gives a sufficient lower bound). Finally, part (iv)
ensures that it is never optimal to ask the agent to shirk
on the equilibrium path as the damage from shirking is
sufficiently large.8

Because the introduction of the standardized proce-
dure is a part of the principal’s strategy, the analysis
of the optimal relational contract requires a complete
characterization of the equilibrium payoff set both
before and after the principal introduces this proce-
dure. The characterization results in these two scenar-
ios are presented in the next two sections.

3. Equilibrium Payoff Set After
Establishing the Standardized
Process

Suppose that the principal has already put in place
the rules that standardize the work process; that is,
the rigid action is available to the agent. Let Er be the
PPE payoff set (for a given δ). We characterize Er
using the recursive method from Abreu et al. (1990).
Any equilibrium payoff pair π,u( ) ∈ Er is supported
either by a pure action profile in the stage game
together with a set of continuation payoffs that the
players expect to receive in the future or by randomiz-
ing over a set of equilibrium payoff pairs that are
themselves supported by some pure action profiles (in
the stage game).

In a pure action profile in the stage game, the players
can take the outside option, in which case both parties
receive zero. The parties can also enter the relationship,
in which case, the agent will take either the adaptive
action or the rigid action (by Assumption 1(iv), it is
never optimal for the principal to hire the agent and ask
him to shirk).With a slight abuse of notation, we denote
the players’ stage game action profile as a. We say a �O
when the parties take the outside option, a � A when
the parties enter the relationship and the agent takes
the adaptive action, and a � R when the parties enter
the relationship and the agent takes the rigid action. For
any action profile a ∈ A,R{ } played in the current
period, let ba be the associated bonus to the agent when
there is no liquidity shock. Also, let πa

s ,π
a
n,u

a
s ,u

a
n

( )
be the

associated continuation payoffs where πa
s and πa

n are
the principal’s continuation payoff in the shock and
no-shock states, respectively, and uas and uan are the
same for the agent. Finally, let πO,uO

( )
be the continua-

tion payoffs of the two parties when a�O.
Here, we first present the set of constraints that the

bonus and the continuation payoffs must satisfy if an
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action a ∈ A,R,O{ } is used to support an equilibrium
payoff pair π,u( ) ∈ Er. Next, using these constraints,
we characterize the frontier of Er.

3.1. Constraints
For any equilibrium payoff pair π,u( ) that is sup-
ported by an action profile a ∈ A,R,O{ } in the current
period, the associated stage game play and the contin-
uation payoffs must be such that (i) the proposed
course of the play indeed offers the said payoff π,u( )
to the players, and (ii) neither party has any incentive
to deviate from the proposed play in the stage game.
These requirements give rise to a set of constraints for
each one of the three pure action profiles in the stage
game, A, R, and O.

3.1.1. Adaptive Action. A payoff pair π,u( ) can be sup-
ported by playing the adaptive action in the current
period at � aA( ) if the following constraints are satisfied.

3.1.1.1. Promise-Keeping. The consistency of the PPE
payoff decomposition requires that the players’ pay-
offs must be a weighted average of their current period
payoff and the continuation payoff. Without loss of
generality, we assume that when the principal wants
to implement the adaptive action, the bonus bA is paid
if and only if Y � y:Hence, wemust have

u � θ 1− δ( ) −C( ) + δuAs
[ ]+ 1−θ( ) 1− δ( )(bA −C) + δuAn

[ ]
(PKA

A)

for the agent, and

π � θ 1− δ( )y+ δπA
s

]+ 1−θ( ) 1− δ( )(y− bA) + δπA
n

]
(PKA

P )

for the principal.

3.1.1.2. No Deviation. In equilibrium, neither party
should have incentives to deviate from the proposed
play, irrespective of whether such a deviation is publicly
observed (“off-schedule”) or not (“on-schedule”). Fol-
lowing an off-schedule deviation, without loss of gener-
ality, we may assume that the players take their outside
options as it constitutes the harshest punishment for
both players. The principal may deviate off-schedule by
not offering a contract to the agent. The agent, on the
other hand, deviates off-schedule if he rejects the princi-
pal’s offer. Hence, the individual rationality constraints

π ≥ 0, u ≥ 0: (IR)

However, both the principal and the agent may also
deviate on-schedule. The principal may claim to face a

liquidity shock when there is none to save on the bonus
payment. As a result, we have the following “truth tell-
ing” constraint

− 1 − δ( )bA + δπA
n ≥ δπA

s (TTA)

that ensures the principal is better off paying the bonus
when there is no liquidity shock.9 The agent, on the
other hand, may deviate and choose to take the rigid
action at � aR( ) instead of the more costly adaptive
action at � aA( ). Because aA yields Y � y with certainty,
such a deviationmay get detected as aRmay yieldY � 0
with probability 1− p. Therefore, the following incen-
tive compatibility constraintmust hold:

u ≥ p[θ( 1− δ( ) −c( ) + δuAs ) + 1−θ( )( 1− δ( )(bA − c) + δuAn )]
+ 1− p
( )

1− δ( ) −c( ):

Using PKA
A

( )
, we can simplify this constraint as

u ≥ 1− δ

1− p
pC− c
( )

≕ u∗: (ICA)

As pC− c > 0 (by Assumption 1(ii)), (ICA) implies that
the agent must be given rents if the principal was to
induce him to take the adaptive action when the rigid
action is available to him. As u ≥ 0, a deviation to com-
pletely shirking on the job (at � aS) is never profitable
for the agent.

3.1.1.3. Feasibility. For the equilibrium payoff to be
feasible, the associated bonus payment must be non-
negative:

bA ≥ 0, (NNA)

and the continuation payoffs themselves must be fea-
sible, that is, the following self-enforcing constraint
must hold:

πA
ρ ,u

A
ρ

( )
∈ Er, ρ ∈ S,N{ }: (SEA)

3.1.2. Rigid Action. Now suppose that a payoff pair
π,u( ) is supported by playing the rigid action in the
current period. As in the case of adaptive action, a sim-
ilar set of constraints must hold.

3.1.2.1. Promise-Keeping. Without loss of generality,
we assume that the bonus bR is paid if and only if
Y ∈ 0,y

{ }
.10 Hence, the promise-keeping constraints

take the following form:

u � θ[ 1− δ( ) −c( ) + δuRs ] + 1−θ( )[ 1− δ( )(bR − c) + δuRn ],
(PKR

A)
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and

π � θ[ 1− δ( )py+ δπR
s ] + 1−θ( )[ 1− δ( )(py− bR) + δπR

n ]:
(PKR

P)
3.1.2.2. No Deviation. As discussed earlier, the indi-
vidual rationality constraint on both players must hold
to deter off-schedule deviations. That is, we require

π ≥ 0, u ≥ 0: (IR)
Similarly, the truth-telling constraint on the principal
prevents the on-schedule deviation where she does
not pay the bonus even though she does not face any
liquidity shock:

− 1 − δ( )bR + δπR
n ≥ δπR

s : (TTR)
The agent’s incentive compatibility constraint is trivially
satisfied as deviating and taking the adaptive action
would yield the same expected benefit (as that of taking
the rigid action) but at a higher cost. Again, as u ≥ 0,
deviating to aS (i.e., shirking) is never profitable.

3.1.2.3. Feasibility. As before, we have the nonnega-
tivity constraint and the self-enforcing constraint:

bR ≥ 0, (NNR)

and

(πR
ρ ,u

R
ρ ) ∈ Er, ρ ∈ S,N{ }: (SER)

3.1.3. Outside Option. Finally, if a payoff pair π,u( ) is
supported by players taking their respective outside
options in the current period, the following set of con-
straints must hold.

3.1.3.1. Promise-Keeping. We have

u � δuO and π � δπO: (PKO)
3.1.3.2. Feasibility. The following self-enforcing con-
straint hold:

(πO,uO) ∈ Er: (SEO)
3.2. Properties of the PPE Payoff Frontier
Define the PPE payoff frontier Ur π( ) as

Ur π( ) :� sup u | π,u( ) ∈ Er{ }:
The following lemma presents a set of general charac-
teristics of the PPE payoff set.

Lemma 1. The PPE payoff set Er has the following proper-
ties: (i) it is compact, (ii) Ur π( ) is concave, and (iii) for any
payoff pair π,Ur π( )( ), the associated continuation payoffs
(along the equilibrium path) remain on the frontier; that is,
for a ∈ A,R{ }, uas �Ur π

a
s

( )
; uan �Ur π

a
n

( )
; and uO �Ur π

O( )
:

For Part (i), the compactness of Er follows from the
fact that there are only a finite number of actions that

the agent may be asked to undertake in any equili-
brium (i.e., a ∈ A,R,O{ }), and the transfer from the
principal to the agent is essentially bounded by the
total future surplus of the relationship. For Part (ii),
the presence of the public randomization device
ensures concavity of Ur π( ). The final part of the pre-
vious lemma shows that, under an optimal relational
contract, the continuation payoffs never fall below the
frontier. Because both the principal’s actions and the
agent’s performance are publicly observed, there is no
need for joint punishment along the equilibrium path.

For our analysis, it is also useful to define the
agent’s highest payoff for a given payoff of the princi-
pal in the set of all PPE that are supported by a spe-
cific action. For any a ∈ A,R,O{ }, let

uar π( ) :�max u | π,u( ) ∈ Er and is supported by a
{ }

:

To characterize the frontierUr, we first describe, for each
action taken, the associated continuation payoffs for the
principal. Let π̄r :�max π | π,u( ) ∈ Er{ }, that is, π̄r is the
highest PPE payoff to the principal when the standar-
dizedwork process has already been established.

Lemma 2. Consider an equilibrium payoff pair π,u( ) that
is on the payoff frontier Ur π( ). The following holds:

(i) If π,u( ) is supported by the adaptive action, then
πA
s π( ) � 1

δ
π− 1− δ( )y( )

< π and πA
n π( ) � π̄r ≥ π,

and if there is no shock, the principal pays a bonus
bA π( ) � y− π− δπ̄r( )= 1− δ( ):

(ii) If π,u( ) is supported by the rigid action, then
πR
s π( ) � 1

δ
π− 1− δ( )py( )

< π and πR
n π( ) � π̄r ≥ π,

and if there is no shock, the principal pays a bonus
bR π( ) � py− π− δπ̄r( )= 1− δ( ) > 0:

(iii) If π,u( ) is supported by the outside option, then
πO π( ) � π=δ:

Part (i) and (ii) of the previous lemma state that the
principal’s continuation payoff decreases in a shock
state and increases in a no-shock state. Such a spread
between the continuation payoffs in the two states indu-
ces the principal to report the state truthfully. However,
as we will argue below, when the principal’s continua-
tion payoff is sufficiently low, following a shock, an
inefficient action—either through the rigid action or the
outside option—must be taken. To minimize the likeli-
hood that such inefficiency would arise, the principal’s
continuation payoff in a no-shock state jumps to the
maximal PPE payoff (π̄r), which gives her the most
cushion for future shocks.11 Also notice that the princi-
pal’s credibility to promise a bonus (required to induce
a given action) hinges on the feasibility of her shock-
state continuation payoff (i.e., πa

s π( )). In any optimal
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contract, the principal’s truth-telling constraint TTa( )
always binds, and together with the promise-keeping
constraint PKa

P
( )

, it implies that πa
s decreases (and the

associated bonus ba increases) as π decreases. Thus,
when the principal’s payoff π( ) is smaller, her credibil-
ity depletes as the associated shock-state continuation
payoff may no longer be feasible. Part (iii) directly fol-
lows from the principal’s promise-keeping constraint
when the outside option is used.

Proposition 1 characterizes the payoff frontier Ur.

Proposition 1. The payoff frontier Ur can be divided into
four regions. There exist cutoffs 0 < πO

r ≤ πR
r ≤ πA

r ≤ π̄r,
with πO

r < π̄r, such that:
(i) For π ∈ [0,πO

r ), the payoff frontier is linear and sup-
ported by randomization between 0, 0( ) and πO

r ,Ur π
O
r

( )( )
.

We have Ur 0( ) � 0 and the payoff 0, 0( ) is supported by a �
O (i.e., players taking the outside option).

(ii) For π ∈ [πO
r ,π

R
r ], Ur π( ) � uRr π( ) (i.e., the payoff fron-

tier is supported by the rigid action).
(iii) For π ∈ (πR

r ,π
A
r ), the payoff frontier is linear and

supported by randomization between πR
r ,Ur π

R
r

( )( )
and

πA
r ,Ur π

A
r

( )( )
.

(iv) Forπ ∈ [πA
r , π̄r], Ur π( ) � uAr π( ) (i.e., the payoff fron-

tier is supported by the adaptive action), and Ur π̄r( ) � u∗.

Figure 1 illustrates the four regions described in Prop-
osition 1. In two regions, one in the middle and one at
the right-most end, the payoffs at the frontier are sup-
ported by pure actions, by playing a � R and a � A,
respectively. Also, the 0, 0( ) payoff pair is the only point
on the frontier that is supported by playing a �O. In the
other two regions, the payoffs are sustained through
randomization. Without loss of generality, we assume
that in the regions where randomization is used, the
players randomize only between the end points of the
two adjacent regions that are sustained by pure actions.

One feature of the payoff frontier is that the more effi-
cient action gets taken as the principal’s payoff increases.
When the principal’s payoff π( ) is sufficiently low, that
is, to the left of πO

r , she does not have enough credibility

to promise a bonus large enough to induce the adaptive
or the rigid action. When π is above πO

r , both the rigid
and the adaptive action may be feasible. Although the
adaptive action is more efficient, it gives the principal a
lower continuation payoff in shock states (by Lemma 2,
πA
s π( ) < πR

s π( )), increasing the chance of termination of
the relationship. When the principal’s payoff is close to
πO
r , the threat of termination is more imminent, causing

the parties to choose the rigid action. In contrast, for a
large enough payoff for the principal, the termination is
less of a concern, and the adaptive action is chosen.

A notable feature of the PPE frontier Ur is that, at
the maximal payoff for the principal π̄r( ), the agent’s
payoff is strictly positive. The reason is that when a
standardized work process is established, the moral
hazard problem becomes more severe as the agent
may deviate and take the rigid action when asked to
undertake the more costly adaptive action. To prevent
the agent from doing so, the principal must offer him
rents. In other words, rules stymie initiative—it gets
harder to induce worker initiative once the work rules
are standardized.

4. Equilibrium Payoff Set Before
Establishing the Standardized Process

We now proceed to characterize the set of PPE payoffs,
E, available at the beginning of the game when the
principal is yet to put in place the standardize work
process. A key decision that the principal needs to
make is whether to introduce these procedures up-
front. Notice that Er ⊆ E. For any payoff π,u( ) ∈ Er,
there always exists a PPE where the principal estab-
lishes the standardized procedure at the beginning of
the game and in the continuation game the parties play
the same strategies that give rise to the payoff π,u( ).
Furthermore, once the principal decides to establish
the standard procedure, the analysis becomes identical
to that discussed in the previous section.

However, when the principal is yet to introduce the
standardized procedure, there are only two actions
that the agent can take on the equilibrium path: either
take the adaptive action or take the outside option. In
this case, any payoff pair π,u( ) ∈ E is supported either
by one of these two pure action profiles or by a ran-
domization over the two. We denote these two pure
action profiles as a �A, and O, respectively. (We use
different notations than before—a �A and O, instead
of A and O—to distinguish between the use of an
action profile when the rigid action is available and
when it is not.) In what follows, we only focus on this
novel part of the analysis.

4.1. Constraints
As in the previous section, we begin our analysis by
presenting the set of constraints that the bonus and

Figure 1. PPE Payoff Set and FrontierWhen the Standar-
dized Procedure Has Already Been Established
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the continuation payoffs must satisfy if an action pro-
file a ∈ A,O{ } is used to support an equilibrium payoff
pair π,u( ) ∈ E.

4.1.1. Adaptive Action. Suppose π,u( ) ∈ E is supported
by the adaptive action (a �A). As discussed in Section
3.1, the following promise-keeping constraints must
hold:

u � θ 1− δ( ) −C( ) + δuAs
[ ]+ 1−θ( )[ 1− δ( )(bA −C) + δuAn ],

(PKA∗
A )

and

π � θ 1− δ( )y+ δπA
s

]+ 1−θ( )[(1− δ)(y− bA) + δπA
n ]:

(PKA∗
P )

The associated no-deviation constraints include the
individual rationality constraints for the off-schedule
deviations:

u ≥ 0, (IR)
and the truth-telling constraint for the on-schedule
deviation:

− 1 − δ( )bA + δπA
n ≥ δπA

s : (TTA∗)

Finally, we have the two feasibility constraints (non-
negativity and self-enforcing):

bA ≥ 0, (NNA∗)

and

πA
ρ ,u

A
ρ

( )
∈ E, ρ ∈ S,N{ }: (SEA∗)

In contrast to the case analyzed in the previous sec-
tion, here the rigid action is not available to the agent.
As a result, if the agent deviates, he must choose at �
aS and his shirking gets detected for sure. Therefore,
the incentive compatibility constraint for the agent’s
action choice is always satisfied, and hence we omit it
here. Also, the SEA∗( )

differs from its counterpart in
Section 3.1 by requiring the continuation payoffs to be
in the payoff set E instead of Er, that is, the PPE payoff
set when the rigid action is available.

4.1.2. Outside Option. If π,u( ) ∈ E is supported by the
parties taking the outside option in the current period
(a �O), the associated continuation payoffs (πO,uO) sat-
isfy the following promise-keeping and self-enforcing
constraints:

u � δuO and π � δπO, (PKO∗)
and

(πO,uO) ∈ E: (SEO∗)

4.2. Properties of the PPE Payoff Frontier
As in the previous section, let U π( ) be the PPE payoff
frontier at the beginning of the game (i.e., before the
standardized work process is introduced), that is,

U π( ) :� sup u | π,u( ) ∈ E{ },
and let π̄ :�max π | π,u( ) ∈ E{ }. Also, for any a ∈ A,O{ },
let

ua π( ) :� sup u | π,u( ) ∈ E and is supported by a
{ }

:

The following two lemmas present a set of general
properties of the payoff frontier U that mirror those of
Ur discussed previously.

Lemma 3. The PPE payoff set E has the following proper-
ties: (i) it is compact, (ii) U π( ) is concave, and (iii) for any
payoff pair π,U π( )( ) sustained by pure action a ∈ A,O{ },
the associated continuation payoffs (along the equilibrium
path) remain on the frontier; that is, uAs �U πA

s
( )

, uAn �
U πA

n
( )

, and uO �U πO
( )

.

Lemma 4. Consider an equilibrium payoff pair π,u( ) that
is on the payoff frontier U π( ). The following holds:

(i) If π,u( ) is supported by the adaptive action, then
πA
s π( ) � 1

δ
π− 1− δ( )y( )

< π and πA
n π( ) � π̄ ≥ π:

If there is no shock, the principal pays a bonus bA π( ) �
y− π− δπ̄( )= 1− δ( ) > 0:

(ii) If π,u( ) is supported by the outside option, then
πO π( ) � π=δ:

The arguments behind these two lemmas closely parallel
their counterpart in Lemma 1 and 2 (hence, we omit the
formal proofs). Using these lemmas, we derive the fol-
lowing proposition that characterizes the PPE payoff
frontier.

Proposition 2. The payoff frontier U can be divided into
four regions. There exist cutoffs 0 < πO ≤ πR ≤ πA ≤ π̄,
with πO < π̄, such that (the notations uRr π( ) and Ur π( ) are
as defined in Proposition 1):

(i) For π ∈ [0,πO), the payoff frontier is linear and sup-
ported by randomization between 0, 0( ) and πO,U πO( )( )

.
We have U 0( ) � 0 and the payoff pair 0, 0( ) is supported by
a �O (i.e., with players taking the outside option).

(ii) For π ∈ [πO,πR], U π( ) �Ur π( ) � uRr π( ) (i.e., the
payoff frontier is supported by the rigid action).

(iii) For π ∈ (πR,πA), the payoff frontier is linear and
supported by randomization between πR,U πR( )( )

and
πA,U πA( )( )

.
(iv) For π ∈ [πA, π̄], U π( ) � uA π( ) (i.e., the payoff fron-

tier is supported by the adaptive actionA), and U π̄( ) � 0.

This proposition indicates that similar to Ur (the
frontier when the standardized process has already
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been introduced), the frontier U can also be divided
into four regions (see Figure 2). A pure action is used
to sustain payoffs in two of the four regions: a part in
the middle is supported by the rigid action where the
principal introduces the standardized work process,
and the very right-most part of frontier is sustained
through the adaptive action where the principal
refrains from introducing the standardized procedure.
In addition, the outside option is used only to support
the payoff 0, 0( ). The remaining two regions are sup-
ported through randomization. As before, we assume
that in such regions the players randomize only
between the endpoints of the two adjacent regions that
are sustained by pure actions.

The shape of the frontierU is also similar to its coun-
terpart Ur where a more efficient action gets taken as
the principal’s payoff increases. However, there are
some important differences. First, the frontier U indi-
cates not only the agent’s action but also the principal’s
decision on the implementation of the standardized
procedure. In particular, whenever the principal’s pay-
off falls below the cutoff πR, the procedure is put in
place with certainty. Second, at the principal’s maxi-
mal payoff, π̄, the agent does not earn any rents. This
difference arises because at π̄ the principal has not put in
place the standardized procedure, and hence, the agent
cannot take a rigid action. Consequently, the underlying
moral hazard problem is less severe, and the principal
need not offer him rents to induce him to take the adap-
tive action. Finally, the cutoffs that define the four regions
are, in general, different. This difference in the cutoffs is
important as it affects the dynamics of the relationship,
whichwediscuss in the next section.

5. Dynamics of the Relationship
Using the results obtained in the previous two sec-
tions, we can now discuss the dynamics of the relation-
ship as it may evolve over time in response to the
liquidity shocks faced by the principal. We begin by
presenting a lemma that helps us contrast the PPE pay-
off frontiers Ur and U—the ones when the principal
has established the standardized procedure and when
she has not.

Lemma 5. We have the following: πO � πO
r , π

R ≤ πR
r , and

π̄ > π̄r. In addition, U π( ) �Ur π( ) for all π ≤ πR and
U π( ) >Ur π( ) otherwise.

This lemma highlights the efficiency loss that results
from the establishment of the standardized procedure.
Such efficiency loss is illustrated in Figure 3 where we
depict the PPE payoff frontiers U and Ur. The maxi-
mal joint surplus that could be obtained in any PPE
where π > πR is strictly smaller if the standardized
procedure is established from the beginning of the
game. The loss of surplus stems from the fact that hav-
ing the standardized procedure in place increases the
likelihood that an inefficient action would be taken in
the future (in response to shocks) even if the efficient
adaptive action is chosen at present.

Notice that the thresholds πO and πR indicate how
far the principal’s continuation payoff needs to fall
before each of the two inefficient actions—the outside
option and the rigid action, respectively—gets taken if
the standardized procedure has not been established
already (also, πO

r and πR
r represent the corresponding

cutoffs when the procedure has been established).
Although the threshold for taking the outside option
is the same under the two cases, the threshold for tak-
ing the rigid action is (weakly) lower.

More importantly, the principal’s maximal PPE
payoff is strictly larger if the procedure is not in place
than if it is (i.e., π̄ > π̄r). That is, the principal not only
can extract more rents from the agent but also the joint
surplus is larger if the standardized procedure is not
in place to begin with. The arguments for these two
observations are closely interlinked. Recall that hav-
ing the standardized procedure available makes the
moral hazard problem more severe. To induce the
agent to take the adaptive action, the principal must
offer him rents (by Proposition 1). As the principal has
a smaller continuation value to begin with, it lowers
her credibility in promising a large bonus payment
that is needed to induce the adaptive action. Conse-
quently, the relationship becomes more vulnerable to
shocks and the use of an inefficient action becomes
more likely in the future, lowering the total surplus in
the relationship.

Figure 2. PPE Payoff Set and Frontier Before the Standar-
dized Procedure Is Established

Figure 3. PPE FrontiersUr andU
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In contrast, if the procedure has not been estab-
lished yet, the agent does not get any rents when the
principal’s payoff is π̄. The principal can better extract
rents, giving her more credibility in promising a
bonus. Consequently, the relationship is more resilient
to shocks and yields a strictly higher surplus.

Proposition 3 (Structure and Dynamics of the Relation-
ship). The optimal relational contract contains the follow-
ing three phases.

(i) The relationship starts in Phase 1 where the following
happen. (a) The standardized procedure is not introduced
and the agent always chooses the adaptive action. (b) The
principal’s payoff π starts at π̄. (c) For any π, when there is
a shock, the principal’s payoff decreases to πA

s π( ). However,
if there is no shock, the principal pays a bonus bA π( ) and her
payoff moves to π̄ (or remains at π̄ if π � π̄). The relation-
ship stays in this phase as long as π ≥ πA. If π < πA, the
relationship transitions to Phase 2 with positive probability.

(ii) In Phase 2, the following happen. (a) The standardized
procedure is established, and the agent starts the phase by
choosing the rigid action. (b)Whenever the agent chooses the
rigid action, if there is a shock, the principal’s payoff
decreases to πR

s π( ). However, if there is no shock, the princi-
pal pays a bonus bR π( ) and her continuation payoff moves to
π̄r (where the agent chooses the adaptive action). (c) When-
ever the agent chooses the adaptive action, if there is a shock
the principal’s payoff decreases to πA

s π( ). If there is no shock,
the principal pays a bonus bA π( ), and her payoff moves to π̄r

(or remains at π̄r if π � π̄r). (d) The agent chooses the rigid
action if π ≤ πR

r , and chooses the adaptive action with a posi-
tive probability if and only if π > πR

r . The relationship stays
in this phase as long as π ≥ πO. If π < πO, the relationship
transitions to Phase 3 with positive probability.

(iii) In Phase 3, the relationship is terminated.

The previous result follows directly from the charac-
terization of the PPE frontiers discussed in Proposi-
tions 1 and 2 (hence, we omit the formal proof). The
relationship starts at the right-most point of U: the
principal does not establish the standardized proce-
dure, encourages worker initiative by inducing the
agent to choose the adaptive action, and extracts all
surplus (i.e., π � π̄). If a shock occurs, the continuation
payoffs move to the left along the PPE payoff fron-
tier—to ensure truthful reporting, the principal must
transfer rents to the agent following the announcement
of a shock state. Although a no-shock state instantane-
ouslymoves the relationship to its initial starting point,
as an arbitrarily long stretch of consecutive shocks
occurs almost surely, the parties are eventually forced
to take an inefficient action.

Once the principal’s payoff falls below πA, there
is a positive probability that she would establish the
standardized procedure and ask the agent to follow

it (i.e., take the rigid action). In particular, for lower
values of π, the principal may not have sufficient
credibility to promise the bonus needed to induce
the costly adaptive action, and the rigid action is
used with certainty. However, once the standardized
work process is introduced, the relationship never
fully recovers. Even after the shock has passed, the
relationship moves to the right-most point of Ur

instead of U, where the joint surplus is smaller than
what it was at the beginning of the relationship. As
before, following more shocks, the continuation pay-
offs move further to the left. Eventually, the princi-
pal loses so much credibility that she cannot even
promise the bonus needed to induce the agent to
take the rigid action, and the parties may terminate
the relationship.

Two important implications of the above findings—
as given in the following proposition—further illus-
trate the tradeoffs with establishing the standardized
procedure.

Proposition 4. The optimal relational contract has the fol-
lowing features:

(i) For some parameter values the rigid action may be used
when the adaptive action is still feasible. Moreover, the set of
parameters for which this is the case is (weakly) larger when
the standardized procedure has already been established in
the past than when it has not.

(ii) The number of consecutive shocks that guarantees that
the rigid action is used when the relationship starts in Phase
1 (with π � π̄ as the standard process is yet to be established)
is at least as large as its counterpart when the relationship
restarts after reaching Phase 2 (with π � π̄r where the stand-
ard process has already been established).

Wehave argued previously that in response to a cur-
rent shock the rigid actionmay be used as the principal
may not have enough reputational capital to incentiv-
ize the agent to undertake the more costly adaptive
action. However, the first part of Proposition 4 states
that in response to shocks the relationship may switch
to the rigid action as a “precautionary measure”—
even if the principal could still induce the agent to take
the adaptive action, the rigid action is called for (with
some probability).12

The intuition can be traced from the continuation
payoffs in a shock state as given in Lemmas 4 and 2. For
a given payoff of the principal the associated continua-
tion payoff in a shock state is smaller when the adaptive
action is being used compared with the case when a
rigid action is being used (i.e., πA

s π( ) < πR
s π( )). There-

fore, by using the rigid action instead of the adaptive
one, the contracting parties can arrest the erosion of sur-
plus in the relationship as shocks occur. Consequently,
the likelihood of the relationship’s survival increases
and, under certain parameters, the resulting gains in the
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surplus outweigh the loss because of the use of the inef-
ficient rigid action. Also, recall that if the rigid action
has not yet been used in the past, there is an additional
cost of using it as it reduces the surplus in the relation-
ship even after the shock passes. Hence, the optimal
contract is more likely to call for a “precautionary” use
of the rigid actionwhen it has already been in place.

The second part of Proposition 4 states that the rela-
tionship becomes more fragile following the introduc-
tion of the standardized procedure. A relationship that
starts with the agent taking the adaptive action may
move more quickly toward the phase where the rigid
action is used when the agent is already aware of the
rigid action thanwhen he is not.

The argument again relies on the fact that even if the
relationship may recover after reaching Phase 2 (i.e.,
the agent can be induced to take the adaptive action), it
becomes less valuable to the principal (i.e., π̄r < π̄) as
the rigid action remains available to the agent. Conse-
quently, it is less resilient to shocks, and more likely to
rely on the rigid action when the shocks arise in the
future. In other words, by establishing the standar-
dized procedure in the face of liquidity shocks, the
principal can better weather the shock at present (and
may save the relationship from termination), but it
fundamentally changes the nature of the relationship
in the future. Over time, the relationship becomes
more reliant on the standardized work process even as
it strives to foster worker initiative.

6. Discussion and Conclusion
The events of the past play a significant role in shaping
an organization’s future. In his seminal treatise on the
limits of organization, Arrow (1974, p. 49) observes
that “… the combination of uncertainty, indivisibility,
and capital intensity associated with information chan-
nels and their use imply (a) that the actual structure
and behavior of an organization may depend heavily
upon random events, in other words on history, and
(b) the very pursuit of efficiency may lead to rigidity
and unresponsiveness to further change.”Our analysis
highlights a novel mechanism that speaks to this
observation.

We show how the extent of worker initiative within
a firm may evolve over time in response to private
shocks to the firm’s credibility. Because it is costly for
the workers to continually adapt their actions to local
information, fosteringworker initiative requires strong
incentives. In a time of crisis, such incentives may be
hard to provide as the firm loses credibility, and it may
attempt to cope by implementing a standardized work
process designed to deliver satisfactory performance
in a typical production scenario. A standardized proc-
ess compromises production efficiency (by ignoring
local information) but is less onerous for the workers

to execute. Consequently, a weaker incentive may suf-
fice to induce theworkers to follow such a process.

However, the adoption of a standardized process
can be a double-edged sword. Although it helps a
firm weather the shocks in the short term, it may
change the nature of the employment relationship in
the long run. Once the workers become familiar with
a work procedure that is likely to yield a satisfactory
performance in a typical setting, it becomes more dif-
ficult to motivate the workers to pay attention to the
specifics of a given situation and adapt their actions
accordingly. As the incentive problem aggravates, the
value of the relationship decreases, making the firm
more vulnerable to future shocks and more reliant on
the standardized work processes.

We conclude with the following remarks. First, we
focus on a parameter range where the firm may oscil-
late between periods of standardized work processes
and encouragement of worker initiative. The standar-
dized processes are used in the times of crisis, but after
surviving the crisis the worker is again urged to take
initiative. Thus, our result suggests that the process
through which the firm becomes more rigid over time
need not be “linear,” and it may go through multiple
cycles where the emphasis shifts from adaptation to
standardization and vice versa.

However, one can consider parameters in our model
(by relaxingAssumption 1(iii)), where the relationship is
stuck with standardized processes once they are made
available. In particular, when the value of the output is
too low or the agent’s rents under the adaptive action
are too high (e.g., y is small and p is large), themaximum
bonus the principal can credibly promise would no lon-
ger be enough to induce the agent to take the adaptive
action when the rigid action is already available. This
scenario reflects the so-called “structural inertia” infirms
where they appear to be incapable of making significant
changes to their organizational strategies in the face of
changing business environments (Hannan and Freeman
1984, 1989).

Second, a key feature of our model is that the rigid
action aR, once introduced, remains accessible to the
agent in the future. As discussed earlier in the introduc-
tion, it is difficult to prevent the worker from using an
action that he has already learned how to execute, and if
the firm were to render the action ineffective, it may
require significant changes in the underlying produc-
tion process. However, what if the firm could revoke
the worker’s access to rigid action when it is no longer
required? In this case, the optimal contract would differ
from ourmain analysis in at least two aspects.

The intertemporal tradeoff in incentive provision
that we explore in our setup disappears. Because the
firm can remove the rigid action when it is no longer
needed, if the firm again seeks to encourage adaptation
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in the future it would not confront the aggravated
moral hazard problem that crops up in our setup. Con-
sequently, there is no need to offer rents to the worker
to incentivize adaptation even when the rigid action
has been used in the past.

Moreover, the optimal contract would exhibit similar
dynamics to that in our model, but the introduction of
the rigid action would not change the PPE payoff set in
the continuation game. The PPE payoff frontier (which
would remain invariant throughout the relationship)
would lie above the frontier U derived in our model
and the maximal surplus generated in the relationship
would be larger as the introduction of the rigid action
would not increase the firm’s vulnerability to future
shocks. In this context, it is also interesting to note that
the possibility of the use of the rigid action improves the
value generated by the relationship. If the firm never
had the option to introduce the rigid action, the PPE
payoff frontier would be strictly below U, as the rela-
tionshipwould face a higher likelihood of termination.

Finally, in our model, the firm and the worker always
have a common understanding of what is expected out
of the worker. This is a natural assumption when rules
are in place. Asmentioned previously, rules can serve as
guidelines to theworker on how to do his job. In absence
of rules however, this assumption becomesmore impor-
tant.When theworker initiative is desired, it is necessary
that the worker understands what the firm’s objectives
are and what the worker needs to do to attain those
objectives. In a complex production environment, it is
conceivable that this understanding is difficult to estab-
lish, leading to a “problem of clarity” (Gibbons and
Henderson, 2012a; b). Thus, the strength of relational
incentives depends not only on the extent of trust
between the contracting parties but also on their ability
to communicate clear expectations about their respective
roles in the relationship. The interplay between the prob-
lems of “credibility” and “clarity” can have important
implications for the optimal use of rules in relational
contracts. A formal treatment of this issue is beyond the
scope of this paper, andwe leave it for future research.
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Appendix
This appendix contains the proofs omitted in the text.
Before we present the proofs, it is useful to formally state
the programs that define the relevant PPE payoff frontiers.
First, for a ∈ A,R{ }, uar π( ) satisfies the following:

uar π( ) � max
ba,πa

s ,πa
n

1− δ( )[ 1−θ( )ba − c a( )] + δ 1−θ( )Ur π
a
n

( )+θUr π
a
s

( )[ ]
subject to PKa

P
( )

, TTa( ), NNa( ), and SEa( ):

(Clearly, uar π( ) is defined only for the values of π such
that the corresponding ICa( ) constraint is satisfied.) Also
notice that

uOr π( ) � δUr(πO), where πO � π=δ:

Furthermore, for all π ∈ 0, π̄r[ ], the frontier Ur is the func-
tion that satisfies the following:

Ur π( ) � max
αa≥0, πa∈ 0, π̄ r[ ]

∑
a∈ A,R,O{ }

αauar πa( )

s:t:
∑

a∈ A,R,O{ }
αa � 1, and

∑
a∈ A,R,O{ }

αaπa � π:

The programs for the payoff frontiers ua π( ) for a ∈ A,O{ }
and U π( ) can be formulated analogously.

Proof of Lemma 1. Part (i) follows from standard argu-
ments (as in Abreu et al. 1990) because the action space for
each player in the stage game is finite. Part (ii) immediately
follows from the availability of the public randomization
device. The argument for part (iii) is given as follows.
It is sufficient to show this property for a payoff supported

by a pure action. Without loss of generality, assume that
π,u( ) � π,Ur π( )( ) and it is supported by the adaptive action
(a � A), and the continuation payoffs (in the shock and
no-shock states) are πA

s ,u
A
s

( )
and πA

n ,u
A
n

( )
. Suppose that uAn

<Ur π
A
n

( )
. Now consider an alternative strategy that also

specifies a � A and offers continuation payoffs πA
s ,u

A
s

( )
and

πA
n ,u

A
n + ε

( )
, where ε > 0 and uAn + ε <Ur π

A
n

( )
. Under this

strategy, PKA
A

( )
and PKA

P
( )

imply that the principal’s payoff
remains at π whereas the agent’s payoff is u+ 1−θ( )δε
>Ur π( ). It is routine to check that this strategy profile also
satisfies all other constraints, and hence, constitutes a PPE.
However, this observation contradicts the fact that u is the
highest PPE payoff to the agent when the principal’s payoff
is π (as we have assumed that π,u( ) is on the frontier Ur).
Hence, we must have uAn �Ur π

A
n

( )
. An identical argument

holds in the case of all other continuation payoffs. w

Proof of Lemma 2. The proofs for each of the three parts
are as follows.

Part (i). Step 1. We claim that without loss of generality,
we can assume that TTA( )

binds. We prove this by contradic-
tion. Given a strategy profile where TTA( )

is slack, consider a
new strategy where πA

n is reduced by θε (ε > 0) and πA
s is

increased by 1−θ( )ε, and all other aspects of the initial strat-
egy profile are kept unchanged. Now, for ε sufficiently small,
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this new strategy satisfies all constraints that a PPE payoff
must abide by when it is supported by the adaptive action,
and yields a payoff π, û( ) where û ≥ u. To see this, as bA ≥ 0,
we have πA

n > πA
s (as TTA( )

is slack). Therefore, as Ur is con-
cave, for ε sufficiently small we have

θUr(πA
s + 1−θ( )ε) + 1−θ( )Ur(πA

n −θε) ≥ θUr(πA
s )

+ 1−θ( )Ur(πA
n ):

From Lemma 1, we know that the continuation payoffs are
always on the frontierUr. Hence, PKA

A
( )

implies that under the
new strategy profile the agent’s payoff û ≥ u. By construction,
PKA

P
( )

remains unaltered; therefore, π, û( ) satisfies IR( ) and
ICA( )

is (weakly) relaxed. Also by construction, NNA( )
is unaf-

fected, and TTA( )
continues to hold as it was slack to begin

with. Finally, as πA
n > πA

s and because the PPE payoff set Er is
convex, both πA

s + 1−θ( )ε,Ur π
A
s + 1−θ( )ε( )( )

and (πA
n −θε,

Ur π
A
n −θε

( )) are in Er. Therefore, SEA( )
holds. Hence, if TTA( )

is slack, either π,u( ) is not on the frontier of Er, which is a con-
tradiction, or one can construct a PPE where TTA( )

binds and
the players get the exact same payoff as before.

Step 2.Given that TTA( )
binds, we have from PKA

P
( )

that

π � θ[ 1− δ( )y+ δπA
s ] + 1−θ( )[ 1− δ( )(y− bA) + δπA

n ]
� 1− δ( )y+ δπA

s :

This gives that

πA
s � 1

δ
π− 1− δ( )y( )

: (A.1)

As π < y (note that the highest surplus that can be attained
in a stage game is y – C), πA

s < π.

Step 3.Next, we determine πA
n : As π,u( ) is on the frontier of

Er and is supported by a � A, we have u � uAr π( ). Moreover,
π+ uAr π( ) is the maximum joint payoff attainable in any PPE
that uses the adaptive action in the current period and gives a
payoff of π to the principal. From Lemma 1, we know that the
continuation payoffs are on the frontier, and Steps 1 and 2 of
this proof show that in any such PPE, we can assume that
TTA( )

binds and πA
s is constant (given π). Hence, wemust have

π+uAr π( ) � max
bA ;π̃A

n

1− δ( )(y−C)

+ δ θ(πA
s +Ur(πA

s )) + 1−θ( )(π̃A
n +Ur(π̃A

n ))
[ ]

s:t: θ 1− δ( )(−c) + δUr π
A
s

( )[ ]+ 1−θ( ) 1− δ( ) bA − c
( )+ δUr(π̃A

n )
[ ]

≥ u∗

ICA( )
− 1− δ( )bA + δπ̃A

n � δπA
s TTA( )

bA ≥ 0 NNA( )
0≤ π̃A

n ≤ π̄r, SEA( )
and the solution to the above program yieldsπA

n π( ). Define

π̄∗
r :� sup{π :U′

r− π( ) ≥ −1}:

We show that πA
n π( ) � π̄∗

r � π̄r.
Step 4. First, we show that π̄∗

r � π̄r. Suppose to the con-
trary that π̄∗

r < π̄r: First, π̄∗
r,Ur π̄

∗
r

( )( )
is an extreme point and is

therefore sustained by a pure action. It cannot be sustained
byO. If so, then the associated continuation payoffs would be
π̄∗

r=δ,Ur π̄
∗
r

( )
=δ

( )
� π̄∗

r,Ur π̄
∗
r

( )( )
, and it contradicts the defini-

tion of π̄∗
r. Hence, π̄∗

r,Ur π̄
∗
r

( )( )
is sustained either byA or R.

Step 5. Suppose that π̄∗
r,Ur π̄

∗
r

( )( )
is sustained by A. Because

TTA( )
binds, we have

πA
s π̄∗

r
( ) � π̄∗

r − 1− δ( )y( )
=δ < π̄∗

r:

Step 5a. Now, if bA � 0, from TTA( )
, we have πA

n π̄∗
r

( ) �
πA
s π̄∗

r
( )

: Consider in this case a perturbation in which
π̃A

s � π̃A
n � πA

s π̄∗
r

( )+ ε, and bA unchanged. This perturbation
satisfies all the constraints. It increases the payoff of the prin-
cipal by δε and changes the agent’s payoff by

δ Ur
(
πA
s π̄∗

r
( )+ ε

)−Ur
(
πA
s π̄∗

r
( ))( )

≥ −δε,
where the inequality follows as Ur is concave and πA

s π̄∗
r

( )
<

π̄∗
r: However, this implies (along with concavity of Ur) that

Ur π̄
∗
r + εδ

( ) ≥Ur π̄
∗
r

( )− εδ, contradicting the definition of π̄∗
r:

Step 5b. Next, if bA > 0, we then consider a perturbation in
which π̃A

s � πA
s π̄∗

r
( )+ 1− δ( )ε, b̃ � bA π̄∗

r
( )− δε and πA

n π̄∗
r

( )
unchanged. This perturbation again satisfies all the con-
straints. It increases the payoff of the principal by 1− δ( )δε
and changes the agent’s payoff by

θδ
(
Ur

(
πA
s π̄∗

r
( )+ 1− δ( )ε)−Ur

(
πA
s π̄∗

r
( )))− 1−θ( )δ 1− δ( )ε

≥ −δ 1− δ( )ε:
The inequality again follows because Ur is concave and
πA
s π̄∗

r
( )

< π̄∗
r: This again implies that Ur π̄

∗
r + εδ 1− δ( )( ) ≥

Ur π̄
∗
r

( )− εδ 1− δ( ), contradicting the definition of π̄∗
r:

Step 6. Next, suppose that π̄∗
r,Ur π̄

∗
r

( )( )
is sustained by R. In

this case, if bR > 0 or if bR � 0 and πA
n π̄∗

r
( ) � πA

s π̄∗
r

( )
< π̄∗

r, the
same perturbations as described above lead to contradictions.
It remains to derive a contradiction for bR � 0 and πR

n π̄∗
r

( ) �
πR
s π̄∗

r
( ) ≥ π̄∗

r: Notice that if πR
n π̄∗

r
( ) � πR

s π̄∗
r

( ) � π̄∗
r, we then

have Ur π̄
∗
r

( ) � −c, which is impossible. If πR
n π̄∗

r
( ) � πR

s π̄∗
r

( )
>

π̄∗
r, consider a deviation where π̃R

s � π̃R
n � πR

s π̄∗
r

( )− ε, and bR

remain to be zero. This perturbation satisfies all the con-
straints. It decreases the payoff of the principal by δε and
increases the agent’s payoff by

δ
(
Ur

(
πA
s π̄∗

r
( )− ε

)−Ur
(
πA
s π̄∗

r
( )))

> δε,

where the strict inequality follow from the definition of π̄∗
r

and that both πA
s π̄∗

r
( )

> π̄∗
r and Ur is concave. However,

this implies U′
r− π̄∗

r
( )

< −1, which is a contradiction. This
finishes showing that π̄∗

r � π̄r so that U′
r− π( ) ≥ −1 for all π:

Step 7. Given that U′
r− π( ) ≥ −1 for all π, it is then without

loss of generality to choose πA
n π( ) � π̄r: To see this, suppose

to the contrary that πA
n π( ) < π̄r: Now consider an alternative

profile where π̃A
n � πA

n π( ) + 1− δ( )ε and b̃
A � bA + δε: Under

this perturbation, the principal’s payoff is preserved and so
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are all the constraints. The agent’s payoff changes by

δ(Ur(πA
n π( ) + 1− δ( )ε) −Ur(πA

n π( ))) + 1− δ( )δε ≥ 0,

where the inequality holds because U′
r− π( ) ≥ −1 for all π:

This implies that this perturbation yields a payoff that is
also on the payoff frontier (Ur), and therefore, we can keep
increasing πA

n π( ) (adjusting bA accordingly) until πA
n π( ) � π̄r:

Step 8. Finally, we show that U′
r− π( ) > −1 for all π, so the

choice of πA
n π( ) is unique. To see this, suppose to the contrary

that there exists a π∗ < π̄r, where U′
r− π( ) � −1 for π ∈ π∗, π̄r[ ],

where π∗ is the left end point of this line segment. Notice that
π∗,U π∗( )( ) is an extreme point, and Assumption 1 ensures
that this point is sustained by A. Now TTA( )

again implies
that πA

s π∗( ) < π∗:Also note that

bA π∗( ) � y− π∗ − δπ̄r( )= 1− δ( ) > y− π̄r − δπ̄r( )= 1− δ( ) > 0:

Now consider the following perturbation: decrease bA π∗( ) by
δε, increase πA

s π∗( ) by 1− δ( )ε, and keep the rest unchanged.
Under this perturbation, all constraints are satisfied. The
principal’s payoff increases by δ 1− δ( )ε. The agent’s payoff
changes by

θδ(Ur(πA
s π∗( ) + 1− δ( )ε) −Ur(πA

s π∗( ))) − 1−θ( ) 1− δ( )δε
> −δ 1− δ( )ε,

implying that this perturbation generates a payoff that ex-
ceeds Ur π

∗ + δ 1− δ( )ε( ): This is a contradiction. This implies
that wemust have πA

n π( ) � π̄r:

Step 9.As TTA( )
binds, (A.1) implies

bA � y−π− δπ̄r

1− δ
:

This observation completes the proof of Part (i).
Part (ii). The proof is identical to that of Part (i). As pre-

viously, we may assume that TTR( )
binds with equality

and thus PKR
P

( )
implies

π � 1− δ( )py+ δπR
s :

This gives that

πR
s � 1

δ
π − 1 − δ( )py( )

: (A.2)

Next, because U′
r− π( ) > −1 for all π, the same argument as

previously gives that

πR
n � π̄r:

Now, the formula for bR follows from TTR( )
.

Part (iii). Immediate from PKO( )
. w

To prove Proposition 1, we first prove the following
lemma.

Lemma A.1. The following conditions hold: Ur 0( ) � 0 and
0,0( ) is sustained by a�O. Furthermore, if for some π̃ >
0, π̃,Ur π̃( )( ) is sustained by a�O, then for all π ≤ π̃,
Ur π( ) � uOr π( ). Hence, there exists a cutoff πO

r such that Ur is
a straight line between 0, 0( ) and πO

r ,Ur π
O
r

( )( )
, and Ur π( ) �

uOr π( ) if and only if π ≤ δπO
r :

Proof. The proof is given by the following steps.
Step 1. As 0,Ur 0( )( ) is an extreme point, it must be sus-

tained by a pure action. However, it is routine to check that

0,Ur 0( )( ) cannot be sustained by a�A or R, as the promise-
keeping and truth-telling constraints cannot be satisfied
simultaneously. As only a�O is feasible, from PKO( )

we have
πO � 0. Therefore, the unique PPE that supports 0,Ur 0( )( ) is
one where both players take their outside options in all peri-
ods. Hence, 0,Ur 0( )( ) � 0,0( ).

Step 2. From Lemma 1 and PKO( )
, we have

uOr π( ) � δUr(πO π( )) � δUr π=δ( )
for all π ∈ 0,δπ̄r[ ] (i.e., for all π where uOr π( ) is well
defined). Hence,

uO
′

r− π( ) �U′
r− π=δ( ) ≤U′

r− π( )
for all π ∈ 0,δπ̄r( ), where the inequality follows from the
concavity of Ur (by virtue of being concave, the left and
right derivative of Ur always exist in the interior of its
domain). However, as uOr π̃( ) �Ur π̃( ), this implies that
uOr π( ) ≥Ur π( ) for all π ≤ π̃. However, as Ur π( ) ≥ uOr π( ), we
have Ur π( ) � uOr π( ) for all π ≤ π̃:

Step 3. As Ur π( ) � uOr π( ) for all π ≤ π̃, we have
U′

r− π( ) � uO
′

r− π( ). Therefore, from step 2, uO
′

r− π( ) �U′
r− π=δ( ) �

U′
r− π( ), and because Ur is concave, this implies that Ur is a

straight line passing through 0, 0( ) and extends at least up to
the point π̃,Ur π̃( )( ). Denote the right-most end point of this
line as πO

r ,Ur π
O
r

( )( )
.

Step 4. Take any π,Ur π( )( ) such that π=δ ≤ πO
r . We claim

that such a payoff is sustainable by a � O. Notice that the
associated continuation payoffs πO,uO

( ) � π=δ,Ur π=δ( )( )
(using Lemma 1 and PKO( )

), and hence, SEO( )
is satisfied.

Finally, PKO( )
for the agent holds as Ur π( ) � δUr π=δ( )

becauseUr is linear.
Step 5. However, if π=δ > πO

r , then the payoff π,Ur π( )( )
cannot be sustained by a � O. The argument is as follows. If
πO
r < π̄r, we have

Ur π( ) > 1− δ( )Ur 0( ) + δUr π=δ( ) � δUr π=δ( ):
The inequality follows from the fact that Ur π

′( ) is concave
and the segment starting from 0,0( ) is linear if only if
π′ < πO

r , whereas π=δ > πO
r : Also the equality follows from

Ur 0( ) � 0: However, this implies that PKO( )
for the agent is

violated, and hence, π,Ur π( )( ) cannot be supported by a �O.
If πO

r � π̄r, the proof is immediate as by PKO( )
any point sus-

tained by a �O requires πO π( ) � π=δ ≤ π̄r � πO
r . w

Lemma A.2. Both the rigid and the adaptive action are used
on the payoff frontier. In particular, πO

r < π̄r, and π̄r,Ur π̄r( )( )
is sustained by the adaptive action whereas πO

r ,Ur π
O
r

( )( )
is sus-

tained by the rigid action.

Proof. First, consider the case of the adaptive action. We
prove this by constructing a stationary PPE with associated
payoffs π∗,u∗( ), where π∗ > py (although the payoffs need
not be on the frontier). As py is an upper bound on the prin-
cipal’s payoff in any PPE where the adaptive action is never
used, the adaptive action must be used on the payoff fron-
tier. The proof is given by the following steps.

Step A1. Consider the following stationary strategy profile
where in each period, the agent chooses the adaptive action,
receives a bonus of b∗ ≥ 0 in the no-shock state, and gets a
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payoff of u∗ � 1−δ
1−p pC− c

( )
. When the principal claims that it is

a shock state, the relationship terminates. Denote the princi-
pal’s associated payoff as π∗. For this strategy profile to be a
PPE, π∗,u∗( ) must satisfy all constraints given in Section 3.1
for the case of adaptive action. Note that ICA( )

and (IR) for the
agent are trivially satisfied when u � u∗. Hence, it remains to
check if the following constraints are satisfied:

u∗ � 1− δ( ) −C( ) + 1−θ( ) 1− δ( )b∗ + δu∗( ), (PKA
A)

π∗ � 1− δ( )y+ 1−θ( ) − 1− δ( )b∗ + δπ∗( ), (PKA
P )

− 1− δ( )b∗ + δπ∗ ≥ 0, (TTA)
π∗ ≥ 0: IR( )

Because the proposed strategy profile is stationary, if π∗,u∗( )
satisfies the previous constraints, it also satisfies SEA( )

.

Step A2. From PKA
A

( )
, we obtain

1−θ( )b∗ � C+ 1− 1−θ( )δ
1− δ

u∗ ≕ K: (A.3)

Using PKA
A

( )
and PKA

P
( )

, we have

π∗ + u∗ � 1− δ( ) y−C
( )+ 1−θ( ) δu∗ + δπ∗( ):

Hence,

π∗ � 1− δ( ) y−C
( )

1− 1−θ( )δ − u∗ � 1− δ( ) y−K
( )

1− 1−θ( )δ : (A.4)

Step A3. We claim that u∗, b∗ as given in (A.3) and π∗ as
given in (A.4) satisfy all four constraints given previously.
Trivially PKA

A
( )

and PKA
P

( )
are satisfied by construction. To see

that TTA( )
holds (and hence IR( ) holds as well), note that

using (A.3) and (A.4), (TTA) can be written as

δ 1− δ( ) y−K
( )

1− 1−θ( )δ ≥ 1− δ( )b∗wy ≥ K
1−θ( )δ :

However, this is true by Assumption 1(iii). Hence, the pre-
vious strategy profile constitutes a PPE.

Step A4. Finally, we have π∗ > py as using (A.4), it boils
down to

1− δ( ) 1− p
( )− pθδ

( )
y > 1− δ( )K,

which is the case by Assumption 1(iii). However, this
implies that π̄r,Ur π̄r( )( ) must be supported by adaptive
action. Notice that as π̄r,Ur π̄r( )( ) is an extreme point, it
must be sustained by a pure action. However, it cannot be
sustained by a � O, as then by Lemma 2 we have

πO π̄r( ) � 1
δ
π̄r > π̄r,

which is a contradiction. Also, if π̄r,Ur π̄r( )( ) is sustained
by a � R instead, we have

πR
s π̄r( ) � 1

δ
π̄r − 1− δ( )py( )

> π̄r,

(the last inequality follows because π̄r ≥ π∗ > py), and this
is a contradiction as well.

Next, consider the case of the rigid action. The proof is
given by the following steps (the reader may note that Steps
R1 and R2 are more elaborate than what is necessary for this

proof, but we adopt this approach as it remains applicable
for the proof of Lemma A.4, and hence, it allows us to avoid
repetition).

Step R1. Suppose to the contrary that rigid action is not
used. Therefore, by Lemma A.1, it follows that πO

r ,Ur π
O
r

( )( )
must be sustained by the adaptive action, and hence,
uAr πO

r
( ) �Ur π

O
r

( )
. Let s be the slope between 0, 0( ) and

πO
r ,Ur π

O
r

( )( )
: As πA

s πO
r

( )
< πO

r , by APS bang-bang result and
Lemma A.1, we have πA

s πO
r

( ) � 0 as 0, 0( ) is the only extreme
point to the left of πO

r . Hence, we have πO
r � 1− δ( )y, and

therefore,

s :�Ur 1− δ( )y( )
1− δ( )y :

Furthermore, from PKA
A

( )
and PKA

P
( )

(and using the fact that
πA
s πO

r
( ) � 0 and πA

n π( ) � π̄r), we have

Ur 1− δ( )y( ) � − 1− δ( )C+ 1−θ( )δ π̄r +Ur π̄r( )( )
≤ − 1− δ( )C+ 1−θ( )δ y−C

( )
,

where the inequality follows because y – C is the aggregate
surplus under efficiency. Therefore,

s ≤ − 1− δ( )C+ 1−θ( )δ y−C
( )

1− δ( )y :

Step R2. Next, consider a strategy profile where the agent
chooses the rigid action, bonus payment is bR as given in
Lemma 2, and the continuation payoffs following shock and
no-shock states are 0,0( ) and π̄r,Ur π̄r( )( ), respectively. Under
this strategy profile, the principal’s payoff is 1− δ( )py (from
(A.2)), and the agent’s payoff u � uRr 1− δ( )py( )

satisfies

uRr 1− δ( )py( )+ 1− δ( )py � 1− δ( ) py− c
( )

+ 1−θ( )δ π̄r +Ur π̄r( )( ):
It follows that

S :� uRr 1− δ( )py( )
1− δ( )py � − 1− δ( )c+ 1−θ( )δ π̄r +Ur π̄r( )( )

1− δ( )py :

Step R3. We claim that S > s. Because π̄r,Ur π̄r( )( ) is sus-
tained by the adaptive action, we have Ur π̄r( ) ≥ u∗ (by ICA( )

).
Also, by definition π̄r ≥ π∗. Hence, using (A.4) we obtain

π̄r +Ur π̄r( ) ≥ π∗ + u∗ � 1− δ( ) y−C
( )

1− 1−θ( )δ :

Therefore,

S ≥ 1
1− δ( )py − 1− δ( )c+ 1−θ( )δ 1− δ( ) y−C

( )
1− 1−θ( )δ

( )
:

Now,

− 1− δ( )c+ 1−θ( )δ 1− δ( ) y−C
( )

1− 1−θ( )δ > p − 1− δ( )C+ 1−θ( )δ y−C
( )( )

,

as it can be rearranged as

1− δ( ) pC− c
( )+ 1−θ( )δ y−C

( )
1− 1−θ( )δ 1− δ( ) 1− p

( )− pδθ
( )

> 0,

which is the case by Assumption 1, (ii) and (iii).
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Step R4.As S > s, we have

uRr 1 − δ( )py( )
1 − δ( )py >

Ur 1 − δ( )y( )
1 − δ( )y � Ur 1 − δ( )py( )

1 − δ( )py

(recall thatUr is a straight line between 0, 0( ) and πO
r ,Ur π

O
r

( )( )
,

and 1− δ( )py < 1− δ( )y ≤ πO
r ). However, this implies

uRr 1− δ( )py( )
>Ur 1− δ( )py( )

,

which is a contradiction. Therefore, πO
r ,Ur π

O
r

( )( )
must be

sustained by the rigid action.
As πO

r ≤ π̄r and π̄r can only be sustained by the adap-
tive action, whereas πO

r can only be sustained by the rigid
action, we have πO

r ≠ π̄r. Hence, πO
r < π̄r. w

Lemma A.3. If uAr π′( ) ≥ uRr π′( ) for some π′, then uAr π( ) ≥
uRr π( ) for all π ≥ π′:

Proof. Adding (PKA
P ) and (PKA

A) we obtain that

π+ uAr π( ) � 1− δ( )(y−C) +θδ(πA
s +Ur(πA

s ))
+ 1−θ( )δ π̄r +Ur π̄r( )( ),

where

πA
s � 1

δ
π− 1− δ( )y( )

:

Similarly, adding (PKR
P ) and (PKR

A), we obtain that

π+ uRr π( ) � 1− δ( )(py− c) +θδ(πR
s +Ur(πR

s ))
+ 1−θ( )δ π̄r +Ur π̄r( )( ),

where

πR
s � 1

δ
π− 1− δ( )py( )

:

This implies that

uAr π( ) − uRr π( ) � 1 − δ( )( 1 − p
( )

y − C + c)
+ θδ(πA

s +Ur(πA
s )) − θδ(πR

s +Ur(πR
s ))

� 1 − δ( ) 1 − p
( )

y 1 − θ( ) − C + c
[ ] + θδ(Ur(πA

s )
−Ur(πR

s )):
As a result,

uA
′

r+ π( ) − uR
′

r+ π( ) � θ(U′
r(πA

s ) −U′
r(πR

s )) ≥ 0

because πA
s � 1

δ π− 1− δ( )y( )
< 1

δ π− 1− δ( )py( ) � πR
s and Ur is

concave. In other words, if uAr π′( ) ≥ uRr π′( ) for some π′,
then uAr π( ) ≥ uRr π( ) for all π ≥ π′: w

Proof of Proposition 1. Part (i). That Ur 0( ) � 0, the exis-
tence πO

r , and the linearity of Ur between 0, 0( ) and
πO
r ,Ur π

O
r

( )( )
are proved in Lemma A.1. By virtue of linear-

ity, any payoff in this line segment can be supported by
randomization between the two end points. Hence, with-
out loss of generality, we can also assume that a�O is
played on the frontier only to support 0, 0( ) payoff.

For expositional clarity, below we prove Parts (ii) and
(iv) first and then prove Part (iii).

Part (ii) and Part (iv). Recall from Lemma A.2 (Step R3)
that πO

r ,Ur π
O
r

( )( )
is supported by a�R and that π < πO

r is
supported by randomization (by Part (i)). Lemma A.2 also
shows that the adaptive action is used on the frontier, and
Lemma A.3 implies (along with the fact that uAr π( ) and
uRr π( ) are concave functions) that the set of π values such
that π,Ur π( )( ) is supported by each of these two actions
(a�A and R) are intervals (potentially containing a single
point only) on 0, π̄r[ ]: Moreover, if π,Ur π( )( ) is supported
by a�R and π′,Ur π

′( )( ) is supported by a�A, then it
must be that π′ > π. Hence, there exists two cutoffs πR

r

and πA
r , where πO

r ≤ πR
r ≤ πA

r ≤ π̄r (but πO
r < π̄r) such that

π,Ur π( )( ) is supported by a � R for π ∈ [πO
r ,π

R
r ) and by

a � A for π ∈ πA
r , π̄r

[ ]
:

It remains to show that Ur π̄r( ) � u∗. Suppose on the con-
trary Ur π̄r( ) > u∗ (from ICA( )

we must have Ur π̄r( ) ≥ u∗).
Because π̄r,Ur π̄r( )( ) is supported by a�A, by Lemma A.2,
we know that the associated continuation payoffs for the
principal in the shock and no-shock states are πA

s < π̄r and
π̄r, respectively. The associated bonus payment bA �
y− π̄r > 0 as y – C is an upper bound on π̄r. Now, consider
an alternate strategy profile where the agent is asked choose
A, the principal’s continuation payoffs in the shock and
no-shock states are π̂A

s � πA
s + ε and π̄r, respectively, and the

bonus is b̂
A� bA − δε= 1− δ( ), where ε > 0. From PKA

A
( )

and
PKA

P
( )

, we obtain the associated payoffs as

û � θ[ 1− δ( ) −C( ) + δUr(πA
s + ε)]

+ 1−θ( )[ 1− δ( )(bA − δε= 1− δ( ) −C) + δUr π̄r( )]
and

π̂ � θ 1− δ( )y+ δ(πA
s + ε)[ ]

+ 1−θ( )[ 1− δ( )(y− bA + δε= 1− δ( )) + δπ̄r]:
Observe that under the new strategy profile, TTA( )
remains unaltered by construction. Moreover, for ε suffi-
ciently small, both ICA( )

and NNA( )
remain slack (i.e., û >

u∗ and b̂
A
> 0), and π̂

A
s < π̄r so that SEA( )

is satisfied as
well. Hence, the proposed strategy profile constitutes a
PPE where the principal’s payoff is π̂ � π̄r + δε > π̄r,
which is a contradiction.
Part (iii). If πR

r < πA
r , it implies that any payoff π,U π( )( ),

where π ∈ [πR
r ,π

A
r ) cannot be supported by any of the

three pure actions. However, such π,U π( )( ) ∈ Er as Er is
convex. Therefore, π,U π( )( ) must be supported by ran-
domization between a payoff that is supported by a � R
and one that is supported by a � A. Consequently, Ur π( )
is linear on this interval. Also, it is without loss of gener-
ality to assume that we randomize between the end points
πR
r ,U πR

r
( )( )

and πA
r ,U πA

r
( )( )

. w

To prove Proposition 2, we first prove the following
lemma.

Lemma A.4. The PPE frontier U satisfies the following
properties:

(i) We have U 0( ) � 0 and if for some π̃ > 0, π̃,U π̃( )( ) is sus-
tained by a �O, then for all π ≤ π̃, U π( ) � uO π( ): Hence, there
exists a cutoff πO such that U is a straight line between 0, 0( ) and
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πO,U πO( )( )
, and U π( ) � uO π( ) if and only if π ≤ δπO. Moreover,

πO � πO
r � 1− δ( )py.

(ii)We have U π̄( ) � 0, π̄ > π̄r, and U′− π( ) > −1:
(iii) The adaptive action (a �A) is used on U. Moreover, if

U π′( ) � uA π′( ) for some π′ then U π( ) � uA π( ) for all π ≥ π′:

Proof. Part (i). To see that πO � πO
r , note that by the same

argument as given in Lemma A.2, πO must be supported
by a � R (as is the case for πO

r ). Also, note that both U
and Ur are straight lines where the left-most point is 0, 0( )
in both cases, and the right-most points are πO,U πO( )( )
and πO

r ,U πO
r

( )( )
, respectively. Hence, by APS bang-bang

result, πR
s πO( ) � πR

s πO
r

( ) � 0. However, as πR
s π( ) � 1

δ π−(
1− δ( )py), we have πO � πO

r � 1− δ( )py. The proof of all
other statements of this part are identical to the proof of
part (i) of Lemma A.1.

Part (ii). The proof of U π̄( ) � 0 is similar to that of
Ur π̄r( ) � u∗ given previously. To see that π̄ > π̄r, notice
that U π( ) ≥Ur π( ) and, hence, π̄ ≥ π̄r as the principal
always has the option of revealing the rigid action at the
beginning of the game. In addition, U π̄r( ) ≥Ur π̄r( ) >U π̄( )
� 0. Therefore, it must be that π̄ > π̄r: Finally, it follows
from the same argument as the proof of U′

r π( ) > −1 (in
Step 3 of the proof of Lemma 2, Part (i)) that U′− π( ) > −1:
The details are omitted.

Part (iii). Because π̄ > π̄r, π̄,U π̄( )( ) ∉ Er. Hence, it cannot
be sustained by a ∈ A,R,O{ }. Also, it cannot be sustained
by a �O as the continuation payoff πO π̄( ) � π̄=δ is not fea-
sible. Hence, it must be sustained by a �A; in other
words, a �A is used on U. Next, we show that if
π′,U π′( )( ) is supported by A for some π′, then uA π( ) ≥
Ur π( ) for all π > π′: This implies that U π( ) � uA π( ) for all
π > π′: The proof is given by the following steps.

Step 1. Let πl be the smallest π such that U π( ) � uA π( ) (πl

exists as both U and uA are continuous). Notice that πl ≥
1− δ( )y as πA

s πl( ) ≥ 0. Now we first show that for all π < πl,
either U π( ) �Ur π( ) or U π( ) is sustained by randomization.
The argument is as follows. Because π,U π( )( ) is not supported
by a �A, we have U π( ) > uA π( ) ≥ uAr π( ). Hence, π,U π( )( ) is
either supported by a pure action a ∈ O,O,R{ } or by a random-
ization. However, if π,U π( )( ) is supported by any of these
pure actions, it must be that U π( ) �Ur π( ). Recall that πO �
πO
r � 1− δ( )py and the actionsO andO are never used for any

π > δπO. Hence, for π ∈ 0, 1− δ( )py[ ]
,U π( ) �Ur π( ) as both are

straight lines between 0, 0( ) and πO,uRr πO( )( )
. Moreover, if

π,U π( )( ) is supported by a � R for some π ∈ ( 1− δ( )py,πl], we
trivially haveU π( ) �Ur π( ) � uR π( ).

Step 2.Next, we claim that for all π < πl,
d
dπ

U π( ) ≥ d
dπ

Ur π( ): (A.6)

This is trivially the case if for all π < πl, π,U π( )( ) is supported
by a pure action a ∈ O,O,R{ }, and hence, U π( ) �Ur π( ).
Now suppose that π,U π( )( ) is sustained by a randomization.
Denote the left point of the randomization be πL; so,
U′ π( ) �U′ πL( ). Moreover, we can argue thatU′ πL( ) ≥U′

r πL( ).
Because (πL,U πL( )) is supported by a � R, uRr (πL) �U πL( ).
Also, U(πL) ≥Ur(πL) (as the inequality holds for all π), and
Ur(πL) ≥ uRr (πL) as Ur is the frontier when the rigid action is

available. Therefore, we obtain U(πL) �Ur(πL), and the fact
that U(π) ≥Ur(π) for all π, implies U′ πL( ) ≥U′

r πL( ). How-
ever, also note that U′

r πL( ) ≥U′
r π( ) as Ur is concave. Combin-

ing these observations, we have U′ π( ) �U′ πL( ) ≥U′
r πL( )

≥U′
r π( ), as claimed in (A.6).

Step 3. Now, suppose to the contrary that uA π( ) <Ur π( )
for some π > πl: It follows that there exists some π̂ ∈ πl,π( )
such that

d
dπ

uA π̂( ) < d
dπ

Ur π̂( ),
where the derivative can be thought of as the right or left
derivative (with the proper inequalities) when the deriva-
tive fails to exist. Let

D :� π :
d
dπ

uA π( ) < d
dπ

Ur π( )
∣∣∣∣∣π ≥ πl

{ }
:

For any π̃ ∈ [πL, infD), we have uA π̃( ) �U π̃( ), and therefore,

d
dπ

uA π̃( ) � d
dπ

U π̃( ):
Step 4. Take a πm ∈D such that πA

s πm( ) < infD: Because
πm ∈D, we have

d
dπ

uA πm( ) < d
dπ

Ur πm( ):
However, because

π + uA π( ) � 1 − δ( ) y − C
( )

+ δ θ(πA
s π( ) +U(πA

s π( ))) + 1 − θ( ) π̄ +U π̄( )( )[ ]
,

we have

d
dπ

uA π( ) � θ
d
dπ

U(πA
s π( )) − 1 − θ( ): (A.7)

Similarly, for a ∈ A,R{ }, we obtain

d
dπ

uar π( ) � θ
d
dπ

Ur π
a
s π( )( )− 1−θ( ): (A.8)

Using (A.7) and (A.8) along with the fact that πA
s π( ) � πA

s π( ),
we obtain

d
dπ

Ur πm( ) ≤max
d
dπ

uAr πm( ), d
dπ

uRr πm( )
{ }

� θmax
d
dπ

Ur(πA
s πm( )), d

dπ
Ur(πR

s πm( ))
{ }

− 1−θ( )

� θ
d
dπ

Ur π
A
s πm( )

( )
− 1−θ( ):

The previous inequalities then imply that

d
dπ

U(πA
s πm( )) < d

dπ
Ur(πA

s πm( )):
However, this is a contradiction because if πA

s πm( ) ∈
[πl, infD), we have

d
dπ

U(πA
s πm( )) � d

dπ
uA(πA

s πm( )) ≥ d
dπ

Ur(πA
s πm( )),

by the definition of D. And if πA
s πm( ) < πL, this contradicts

(A.6). w
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Proof of Proposition 2. The proof closely follows its
counterpart for Proposition 1. Part (i) directly follows
from part (i) of Lemma A.4.

Next consider part (iv). This claim directly follows from
parts (ii) and (iii) of Lemma A.4 where we relabel πl (i.e.,
the lowest value of π for which π,U π( )( ) is supported by
a �A) as πA.

Finally, consider parts (ii) and (iii). We know that πO,
(

U πO( )) is supported by a � R. For any π ∈ πO,πA( )
consider

the payoff pair π,U π( )( ): Note that π,U π( )( ) cannot be sup-
ported by a � A because uA π( ) > uA π( ) for all π ≥ 1− δ( )y,
and a � A is not feasible when π < 1− δ( )y. Moreover, it also
cannot be supported by a � O or a �O as these actions can
support payoffs on the frontier only if π < δπO (by Lemma
A.4, part (i)). Hence, π,U π( )( ) must be supported either by a
� R or by randomization. Let πR be the highest value of π
such that π,U π( )( ) is supported by a � R (again, πR exists as
both U and uRr are continuous). Therefore, U πR( ) � uRr πR( )

.
Moreover, as U πR( ) ≥Ur π

R( ) ≥ uRr πR( )
, we have U πR( ) �

uRr πR( ) �Ur π
R( )
. However, this implies U π( ) �Ur π( ) for all

π ∈ πO,πR
[ ]

as U′ π( ) ≥U′
r π( ) for all π < πA (by (A.6)). Now,

because Ur π
R( ) � uRr πR( )

, that is, πR,Ur π
R( )( )

is sustained by
the rigid action, it follows directly from the characterization
of Ur that Ur(π) � uRr π( ) for all π ∈ πO,πR

[ ]
. Hence, U π( ) �

Ur π( ) � uRr π( ) for all π ∈ πO,πR
[ ]

:

Finally, if πR < πA, by definition of πR and the argument
given previously, it directly follows that for any π ∈ πR,πA( )

,
π,U π( )( ) must be sustained by randomization between two
PPE payoffs, one sustained by R and the other by A. Hence,
U π( )must be linear ifπ ∈ πR,πA( )

, andwithout loss of general-
ity, we can assume that the two end points are πR,U πR( )( )

and
πA,U πA( )( )

. w

Proof of Lemma 5. We have already shown πO � πO
r �

1− δ( )py and π̄ > π̄r in Lemma A.4.
To see why πR ≤ πR

r , suppose on the contrary, πR > πR
r .

Because πR,U πR( )( )
is sustained by a�R, U πR( ) � uRr πR( )

.
However, πR > πR

r implies Ur π
R( )

> uRr πR( )
, and hence, we

must have Ur π
R( )

>U πR( )
, which is a contradiction (as

Ur π( ) ≤U π( ) for all π).
That Ur π( ) �U π( ) for all π ≤ πR follows from Proposi-

tions 1 and 2. Next, we show that U π( ) >Ur π( ) for π > πR.
Take some π′ > πR. The agent’s payoff Ur π

′( ) can be
supported by either the rigid action, or the adaptive
action, or by randomization. If it is supported by the rigid
action, Ur π

′( ) � uR π′( ) <U π′( ), where the last inequality
follows from the definition of πR. If π′,Ur π

′( )( ) is sup-
ported by the adaptive action a � A, then Ur π

′( ) � uA π′( )
< uA π′( ) ≤U π′( ), where the first inequality has been
proved above in Step 1 of the proof of Lemma A.4, and
the second one follows from the definition of U. Finally, if
π′,Ur π

′( )( ) is supported by randomization, it must be that
π′ ∈ πR

r ,π
A
r

( )
, and there exists a λ ∈ 0,1( ) such that Ur π

′( )
� λUr π

A
r

( )+ 1−λ( )Ur π
R
r

( )
. Because πA

r ,U πA
r

( )( )
is supported

by a � A, we have U πA
r

( )
>Ur π

A
r

( )
(as argued previously).

However, this implies that

U π′( ) ≥ λU(πA
r ) + 1−λ( )Ur(πR

r ) > λUr(πA
r ) + 1−λ( )Ur(πR

r )
�Ur π

′( ),

where the first inequality follows from the fact that both
(πA

r ,U πA
r

( )) and (πR
r ,Ur π

R
r

( )) are in E. w

Proof of Proposition 4. Part (i). First consider the case
where the standardized procedure is already in place.
Recall that in this case the PPE payoff set is Er and the
PPE payoff frontier is Ur.

Step 1A. Let π̂ :� (1− δ)y. This is the lowest value of π for
which the adaptive action is feasible. The proof consists of
showing that for some parameters

Ur(πO
r ) + (π̂ −πO

r )
d
dπ

uAr (π̂) > uAr (π̂), (A.9)

where the derivative can be thought of as the right or left
derivative when the derivative fails to exist. (We also
maintain this convention with the notation in the remain-
der of the proof.) Recall that πO

r � (1− δ)py. If this condi-
tion is satisfied, then the slope of uAr (π) evaluated at π � π̂

is greater than the slope of the line that connects the
points πO

r ,Ur(πO
r )

( )
and π̂,uAr (π̂)

( )
, which implies that there

exists π′ > π̂ and λ ∈ (0,1) such that (1−λ)πO
r +λπ′ � π̂

and (1−λ)Ur(πO
r ) +λuAr (π′) > uAr (π̂). In other words, there

is a randomization between the points πO
r ,Ur(πO

r )
( )

and
π′,uAr (π′)( )

that for π � π̂ yields a payoff to the agent
strictly greater than uAr (π̂). However, this implies that
Ur(π̂) > uAr (π̂), which means that the point (π̂,Ur(π̂)) on
the payoff frontier requires playing the rigid action in the
current period with a positive probability. That is, the firm
may ask the worker to perform the rigid action even
though the adaptive action is feasible.

Step 1B.We next show that there are parameter values for
which (A.9) is satisfied. Recall from (A.9) that

d
dπ

uAr π( ) � θ
d
dπ

Ur(πA
s (π)) − 1 − θ( ):

Because πA
s (π̂) � 0,

d
dπ

uAr π̂( ) � θ
d
dπ

Ur 0( ) − 1−θ( ) � θ
Ur(πO

r )
(1− δ)py− 1−θ( ):

(Recall that Ur is linear for π < πO
r and its slope is given by

Ur(πO
r )=((1− δ)py). Given this and that π̂ −πO

r � (1− δ)
(1− p)y, we can write (A.9) as

Ur(πO
r ) + θ

Ur(πO
r )

(1− δ)py− 1−θ( )
( )

(1− δ)(1− p)y > uAr (π̂):
(A.10)

Step 1C. Now, because (πO
r ,Ur(πO

r )) is sustained by the
rigid action, by adding PKR

A
( )

and PKR
P

( )
and rearranging, we

obtain that

Ur(πO
r ) � − 1− δ( )c+ 1−θ( )δ π̄r +Ur π̄r( )( ): (A.11)
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Similarly, we can write

uAr (π̂) � − 1− δ( )C+ 1−θ( )δ π̄r +Ur π̄r( )( ):
Hence, uAr (π̂) �Ur(πO

r ) − 1− δ( )(C− c), and we can write
(A.10) as

θ
Ur(πO

r )
(1− δ)py− 1−θ( )

( )
(1− δ)(1− p)y > − 1− δ( )(C− c):

Rearranging terms, we obtain that this inequality is equiva-
lent to

(θUr(πO
r ) − (1−θ)(1− δ)py)1− p

p
> − 1− δ( )(C− c): (A.12)

Step 1D. Now, from (A.11) and the fact that π̄r +Ur π̄r( ) ≥
1− δ( ) y−C

( )
=(1− 1−θ( )δ) (see Step R3 of the proof of

Lemma A.2), we obtain that

Ur(πO
r ) ≥ − 1− δ( )c+ 1−θ( )δ 1− δ( ) y−C

( )
1− 1−θ( )δ :

Thus, a sufficient condition for (A.9) is that

θ c− 1−θ( )δ y−C
1− 1−θ( )δ

( )
+ (1−θ)py < p C− c( )

1− p
: (A.13)

There are parameters values that satisfy this condition and all
the other assumptions of the model. For example, if θδ(1−
p) − p(1− δ) > 0 (a condition compatible with Assumption
1(iii)), the left-hand side of the previous inequality decreases
with y and is satisfiedwhen y sufficiently large.

Now consider the case where the standardized procedure
has not been in place. In this case, the PPE payoff set is E and
the PPE payoff frontier is U. The proof is analogous to that
provided in steps 1A to 1D.

Step 2A. We need to show that there are parameter values
for which

U(πO) + (π̂ − πO) d
dπ

uA(π̂) > uA(π̂): (A.14)

Recall that πO � πO
r: and thatU(πO) �Ur(πO

r ). Hence, the only
difference relative to the previous proof is that we have
d
dπu

A(π̂) instead of d
dπu

A
r (π̂) and uA(π̂) instead of uAr (π̂).

We first show that d
dπu

A(π̂) � d
dπu

A
r (π̂). Recall that

d
dπ

uA π( ) � θ
d
dπ

U(πA
s (π)) − 1−θ( ):

Because πA
s (π̂) � 0,

d
dπ

uA π̂( ) � θ
d
dπ

U 0( ) − 1−θ( ) � θ
U(πO)
(1− δ)py− 1−θ( )

� θ
Ur(πO

r )
(1− δ)py− 1−θ( ),

where the second equality follows from the fact that U(π) �
Ur(π) for π ≤ πO and πO � πO

r . Thus,
d
dπu

A(π̂) � d
dπu

A
r (π̂).

Step 2B.We now analyze uA(π̂) and U(πO). As mentioned
previously,

U(πO) �Ur(πO
r ) � − 1− δ( )c+ 1−θ( )δ π̄r +Ur π̄r( )( ):

Similarly, we have that

uA(π̂) � − 1− δ( )C+ 1−θ( )δ π̄ +U π̄( )( ):
Thus,

uA(π̂) −U(πO)
� − 1− δ( )(C− c) + 1−θ( )δ[π̄ +U(π̄) − (π̄r +Ur π̄r( ))]

≤ − 1− δ( )(C− c) + 1−θ( )δ (y−C) − 1− δ( ) y−C
( )

1− 1−θ( )δ
( )

� − 1− δ( )(C− c) + δ2
θ 1−θ( ) y−C

( )
1− 1−θ( )δ , (A.15)

where the inequality follows from the fact that π̄ +U(π̄) ≤
y−C (recall that y – C is the maximum surplus possible)
and that π̄r +Ur π̄r( ) ≥ 1− δ( ) y−C

( )
=(1− 1−θ( )δ) (from

Step R3 of the proof of Lemma A.2).
Step 2C.Now, rearrange Condition (A.14) as follows:

(π̂ − πO) d
dπ

uA(π̂) > uA(π̂) −U(πO):

A lower bound for the left-hand side of this inequality is given
by the left-hand side of Inequality (A.13). From (A.15), we
obtain an upper bound for the right-hand side. Plugging these
bounds, we obtain a sufficient condition for (A.14) as

θ c − 1 − θ( )δ 1 − p − δ
( )

y − C
( )

1 − δ( ) 1 − p
( )(1 − 1 − θ( )δ)

( )
+ (1 − θ)py <

p C − c( )
1 − p

:

(A.16)

There are parameter values for which this condition is sat-
isfied along all the other assumptions of the model. In par-
ticular, if

θδ 1 − p − δ
( )

> p 1 − p
( )(1 − δ)(1 − 1 − θ( )δ),

then the left-hand side of the condition is decreasing in y
and for sufficient high values of y it is satisfied.

Step 3.We now show that if the rigid action can be used as
a precautionary measure when the standard procedure is yet
to be established, then it can also be used as a precautionary
measure when the standard procedure has already been put
in place.
First, observe that uA π( ) is concave because

d
dπ

uA π( ) � θ
d
dπ

U πA
s (π)

( )
− 1−θ( ),

and we know that U :( ) is concave and πA
s (π) is increasing

in π.
Suppose now the rigid action can be used as a precaution-

ary measure when the standard procedure is yet to be estab-
lished. Because uA π( ) is concave, then there exists
π̃ ∈ πO, π̂

[ ]
such that

U(π̃) + π̂ − π̃( ) d
dπ

uA(π̂) > uA(π̂) (A.17)

and (π̃,U(π̃)) is supported by the rigid action. Because
(π̃,U(π̃)) is supported by the rigid action, U(π̃) �Ur(π̃).
And recall that, as shown in Step 2A, d

dπu
A(π̂) � d

dπu
A
r (π̂). It
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follows that

Ur(π̃) + π̂ − π̃( ) d
dπ

uAr (π̂) > uA(π̂): (A.18)

We next show that uA(π̂) > uAr (π̂). As shown in Step 1C,

uAr (π̂) �Ur(πO
r ) − 1− δ( )(C− c)

and, as shown in Step 2B,

uA(π̂) −U(πO) � − 1− δ( )(C− c)
+ 1−θ( )δ[π̄ +U(π̄) − (π̄r +Ur π̄r( ))]:

Because πO � πO
r and U(πO) �Ur(πO

r ), we obtain that

uA(π̂) − uAr (π̂) � 1−θ( )δ[π̄ +U(π̄) − (π̄r +Ur π̄r( ))],
and observe that π̄r +Ur π̄r( ) < π̄ +U(π̄), because π̄r <
π̄, Ur(π̄r) ≤U(π̄r) and, by Lemma A.4, U′− π( ) > −1.

From (A.18) and uA(π̂) > uAr (π̂), it follows that

Ur(π̃) + π̂ − π̃( ) d
dπ

uAr (π̂) > uAr (π̂), (A.19)

which implies that the rigid action can be used as precau-
tionary measure when the standard procedure has been
put in place.
Part (ii). The proof is as follows.

Step 1.Define T1 π( ) � πA
s π( ), T2 π( ) � πA

s πA
s π( )( )

, and Tn π( )
is defined accordingly. Also, let N be the number of consecu-
tive shocks that guarantees that the rigid action is used when
the relationship starts in Phase 1 (i.e., when the standardized
procedure is yet to be established and the relationship starts
with payoffs π̄, 0( )). Similarly, let Nr be its counterpart when
the relationship starts in Phase 2 (i.e., when the standardized
procedure has been established and the relationship starts
with payoffs π̄r,u∗( )). Recall that πA

s π( ) � πA
s π( ). Hence, N �

min n |Tn π̄( ) ≤ πR
{ }

andNr �min n |Tn π̄r( ) ≤ πR
r

{ }
.

Step 2.Also, πA
s πA( ) ≤ πR, as otherwise one can move both

πA
s and πA

n to the left by ε > 0 and increase the payoff of the
agent. (That is, when the relationship starts in Phase 1 and a
series of consecutive shocks calls for randomization between
a �A and a � R for the very first time, even if a �A is realized
in the current period, another shock in the current period
surely moves the relationship to Phase 2.) Therefore, as πR ≤
πR
r and π̄ > π̄r, we have N ≥Nr. (Also, even if N �Nr, the

principal’s payoff when the rigid action is used is lower if
started out from π̄r than if we start from π̄. That is, at πA the
continuation payoff of the agent following a shock πA

s is
weakly smaller than πR: If not, then one can move both πA

s

and πA
n to the left by ε > 0 and increase the payoff of the

agent.) w

Endnotes
1 In his seminal work on industrial bureaucracy, Gouldner (1954)
makes a related observation on work rules as “they define the
behavior which could permit punishment to be escaped… .[making
it] possible for the worker to remain apathetic, for he now knew just
how little he could do and still remain secure” (pp. 174–175).
2 Several scholars have made a related point in the context of enforc-
ing legal commands. Commands promulgated as rules (as opposed
to “legal standards”) are easier to follow but such promulgations
incentivize the individuals to merely act as per the stated rules even

if they fail to meet the standards (Kaplow 1992; Sullivan 1992; Sun-
stein 1995; Posner 2002). A similar observation is also made in the
context of the accounting standards. The enforcement of a precise
standard may be effective in aligning the auditors’ interests with
that of the investors, but it can result in a “compliance mentality”
that lowers the overall audit quality (Gao and Zhang 2019).
3 In reality, the oscillation between standardization and emphasis
on worker initiative is typically embedded in a broader swing
between centralization and decentralization (Bartlett and Ghoshal
1998).
4 When local information and worker initiative are critical for pro-
duction, verifiable measures of performance may be elusive. There-
fore, incentives may be provided through relational contracts where
the firm’s credibility depends on the future surplus generated in the
relationship (Levin 2003; also see Malcomson 2012, for a survey).
5 Dynamic agency models have also been used in the literature on
optimal long-term financial contracting (Albuquerque and Hope-
nhayn 2004, Clementi and Hopenhayn 2006, DeMarzo and Sanni-
kov 2006, DeMarzo and Fishman 2007). However, in contrast to our
setup, in this literature the agents’ action set is assumed to be exoge-
nous and time invariant.
6 Indeed, our assumption on the workers’ access to the standar-
dized work process is equivalent to a setting where these processes
are always known to the workers but are too costly to follow until
the principal takes the necessary steps to reduce the workers’ execu-
tion cost.
7 Our assumptions on the liquidity shock are reminiscent of Li and
Matouschek (2013), and such shocks may emanate from the volatil-
ity in the credit market or unexpected arrival of new business
opportunities that require a large investment. We adopt this model-
ing specification due to its analytical tractability, but the specific
nature of the shock is not a critical aspect of the model. A similar
tradeoff with the introduction of rule-based work and the associ-
ated contractual dynamics can potentially emerge because of other
types of shocks that create a friction in transfers between the con-
tracting parties.
8 If the consequence of shirking is not too severe, in principle, the
optimal contract could call for intermittent shirking (Zhu 2013). This
assumption rules out such possibilities and simplifies our analysis.
9 This constraint also implies that the principal would not renege on
the bonus payment while admitting that there is no liquidity shock,
that is, − 1− δ( )bA + δπA

n ≥ 0.
10 It is routine to check that if a payoff pair π,u( ) is supported by
playing the rigid action where the associated bonus and continua-
tion payoffs vary with Y ∈ 0,y

{ }
, say, bR Y( ), πR

s Y( ),uRs Y( )( )
and

πR
n Y( ),uRn Y( )( )

, then it can also be supported by playing the rigid
action and using bonus and continuation payoffs that are independ-
ent of Y. One may simply set these quantities at their expected
value; that is, bR 0( ) and bR y

( )
can be replaced by bR :� pbR y

( )+
1− p
( )

bR 0( ) and so on.
11 This pattern of movement in the continuation payoff also occurs
in Li and Matouschek (2013) and follows from the same reasoning.
12 More precisely, under certain parameters, there are values of the
principal’s payoff π such that the adaptive action can be sustained
in equilibrium, but if it is taken, then the associated payoffs of the
players π,u( ) would not be on the PPE payoff frontier. Therefore,
for such values of π, playing the adaptive action with certainty can-
not be optimal.
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