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Abstract. Workers competing in a tournament for a given prize, say a promotion, often
perform sequentially in multiple stages. When the �rm is privately informed about the
workers�performance, it can sharpen incentives by strategically disclosing the intermediate
results. But the policies that enhance �nal-stage e¤ort may dampen incentives at the inter-
mediate stage. In our model, the optimal disclosure policy has a simple form: disclose only
if all workers perform poorly. This result o¤ers a novel justi�cation for partial disclosure in
performance feedback. Also, it is in contrast with the existing literature that focuses on the
extreme policies of �full disclosure�and �no disclosure.�

1. Introduction

While tournaments have received signi�cant attention in personnel economics (Green and
Stokey, 1983; Lazear and Rosen, 1981; Nalebu¤ and Stiglitz, 1983), the existing literature
has mostly focused on static tournaments. In these tournaments, the winner is determined
by how well the participants perform a single task. But tournaments are often dynamic
in nature (Meyer 1991, 1992; Rosen, 1986). Moreover, in many dynamic tournaments, the
�rm (or the tournament organizer) is more informed about the workers�(or the contestants�)
progress compared to what the workers can infer by themselves.
Consider the example of a promotion tournament. In order to be eligible for a promotion,

a worker usually spends a certain duration of time in his current position, and his promotion
depends on how well he has performed relative to his peers in all the tasks that he has been
responsible for. But in the absence of any objective performance measure, the supervisor of
the worker may be better informed about the worker�s (and his peers�) performance com-
pared to what the worker might learn by himself. In fact, when the performance measure
is subjective, promotion tournament might be the only credible incentive mechanism that
the �rm can o¤er, because the subjective nature of the performance measure renders all
pay-for-performance contracts (both explicit and relational) infeasible (Carmichael, 1983b;
Malcomson, 1984).
In a multistage tournament, the information advantage of the �rm allows it to strategically

disclose information to the workers to a¤ect their work incentives. The strategic disclosure of
information is particularly relevant as an incentive device when the �rm has little �exibility
in choosing the rewards of the tournament. Such is the case, for example, when the workers�
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post-promotion wages are market determined (Waldman, 1984). When the �rm is privately
informed about how well each worker has performed in the intermediate tasks, it can choose
how much feedback to give to the workers. In this context, we ask the following question:
What is the optimal disclosure policy when the �rm attempts to maximize the total e¤ort
exerted by its workers?
Indeed, most �rms today adopt some form of performance appraisal and feedback policy to

motivate their employees.1 However, how much information the supervisors should disclose
to their subordinates is a highly debated issue. Some scholars have argued that a greater
openness in the feedback system facilitates trust in the reward system (Hammer, 1975; Lawler,
1987). Others have argued that too much of disclosure may be counterproductive, because
it may damage self-esteem and thereby demotivate the employees (Beer, 1990).
This paper makes two contributions to a nascent but growing literature on optimal interim

feedback (Lizzeri et al., 2002; Yildirim, 2005; Fuchs, 2007; Gershkov and Perry, 2009; Hansen,
2009; Aoyagi, 2010; Dubey and Geanakoplos, 2010; Ederer, 2010). First, we highlight a new
trade-o¤ associated with the interim performance disclosure in a tournament: a disclosure
policy that enhances post-disclosure work incentives may dampen work incentives in the pre-
disclosure stage. While the existing literature has recognized that the �rm�s disclosure policy
can a¤ect both the pre- and the post-disclosure e¤ort levels in a tournament (e.g., Yildirim,
2005; Aoyagi, 2010; Ederer, 2010), it has not fully explored the potential trade-o¤ that may
arise between the two.2

Second, we show that, in the face of the aforementioned trade-o¤, partial disclosure can
be strictly optimal. This �nding is in contrast with the existing literature. The existing
models that study information disclosure in tournaments either a priori restrict attention to
the �extreme�policies of full disclosure and no disclosure (Yildirim, 2005; Ederer, 2010) or
show that one of the extreme policies is always optimal, depending on the curvature of the
workers�cost function (Aoyagi, 2010). Our results indicate that limiting attention only to
the extreme policies may imply a loss of generality, and that the optimal policy can be more
nuanced than a simple choice between full and no disclosure.
Partial disclosure in the form of �grade compression� is widespread in performance ap-

praisal: while rating their employees� performances, supervisors often give a very coarse
rating (Beer, 1990; Murphy, 1990; MacLeod, 2003). A number of recent articles provide ex-
planations for this phenomenon in contexts that are quite di¤erent from ours. For example,
Dubey and Geanakoplos (2010) consider a one-stage game where each participant�s outcome
is a noisy function of his e¤ort, and participants care about how their performance compares
to that of others. They show that coarse feedback that pools agents with similar perfor-
mances (e.g., letter grades as opposed to exact numerical scores in an examination) may
generate better incentives than full disclosure. Fuchs (2007) considers a dynamic principal-
agent model with subjective performance evaluation. He shows that it may be optimal for
the �rm not to o¤er any feedback unless the worker�s performance falls below a threshold, at

1A commonly observed feedback system in many organizations is the so-called �3600 feedback�system. In
this system the supervisor gathers information about his employee not only based on his own observation, but
also by seeking performance appraisals about the worker from his peers. See Peiperl (2001) for a discussion
on the pros and cons of such a system. Also see Murphy (1990, 1992) for a case study on a more traditional
feedback system where each manager o¤ers feedback to her employee solely based on her own observation
about the employee�s performance.

2Gershkov and Perry (2009) highlight a similar tradeo¤ in a tournament model where the principal decides
how much weight to put on the midterm review, but assumes an exogenously �xed disclosure policy. Lizzeri
et al. (2002) compare full disclosure to no disclosure in a principal-agent model with interim performance
evaluation and �nd that, for certain wage schemes, full disclosure induces higher pre-disclosure e¤ort but lower
post-disclosure e¤ort. Our article is perhaps the �rst one to study this tradeo¤ in the context of a tournament
where the principal chooses a disclosure policy.
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which point the worker is �red. Hansen (2009) proves the optimality of partial disclosure in a
principal-agent model with career concerns, where interim feedback provides the agent with
information about his own ability. Our result suggests that partial disclosure can also arise
as part of an optimal incentive structure in a dynamic tournament even when it is common
knowledge that the participants have the same abilities.
We consider a simple model of promotion tournament where two ex ante identical workers

compete in two stages, intermediate and �nal. At each stage, each worker can either succeed
or fail. After the intermediate stage, the �rm (but not the workers) observes the results
and publicly discloses some information about them. After observing the �rm�s disclosure,
the workers update their beliefs about the intermediate outcome and choose their �nal-stage
e¤ort levels. The worker who gets the highest number of successes over the two stages is
promoted. At the beginning of the game, the �rm commits to a disclosure policy, which
maps the interim performances of the workers into a set of signals that the �rm can publicly
disclose. The post-promotion wages are exogenous to the �rm and the only channel through
which the �rm can in�uence the e¤ort incentives is by strategic disclosure of the intermediate
performance.3

The key result of our paper is that the optimal disclosure policy takes a simple form: the
�rm discloses information (without any noise) only if both workers fail at the intermediate
stage, and does not disclose any information following any other intermediate outcome. The
intuition behind this result is the following. While choosing the optimal disclosure policy, the
�rm faces a trade-o¤ between �nal-stage and intermediate-stage e¤ort: a disclosure policy
that enhances the �nal-stage e¤ort may dampen the intermediate-stage e¤ort incentives.
When the workers learn that the race is close, the �nal-stage e¤orts are high, because by
exerting additional e¤ort a worker can signi�cantly a¤ect his chances of getting promoted.
But e¤ort is costly, and consequently a closely competed race lowers the participants�expected
payo¤s. So, if the disclosure policy informs the workers whenever the race is close, at the
intermediate stage the workers may also have a countervailing incentive to reduce their e¤ort
in order to avoid a close race at the �nal stage. The disclosure policy �disclose only if both
fail�resolves this trade-o¤ optimally. On the one hand, disclosing the information that both
workers have failed at the intermediate stage (and thus are in the same position) stimulates
competition at the �nal stage. On the other hand, both workers would not want to �nd
themselves in the position where they compete intensively at the �nal stage. So they have
incentives to exert e¤ort at the intermediate stage in order to decrease the probability of the
outcome where they both fail.
To establish this result, we �rst consider the disclosure policies that are symmetric (im-

mune to any permutation of the workers�names) and deterministic (the feedback depends
deterministically on the intermediate results). This class of disclosure policies is not only
more realistic, it is also analytically tractable. We then analyze the optimal disclosure policy
in the class of all feasible disclosure policies. This problem is analytically intractable because
of the potentially large set of possible signals. However, we show that one can bound the
required number of signals, which allows for numerical tractability. The numerical optimiza-
tion results indicate that the partial disclosure policy discussed above remains optimal even
if the �rm can choose any general policy.
This paper is organized as follows. The next section presents the model. Section 3 charac-

terizes the optimal e¤ort choice given any disclosure policy. Section 4 analyzes the optimal
disclosure policy and Section 5 discusses the robustness of the main �ndings to some alter-
native modeling assumptions. The �nal section concludes.

3In this sense, our article complements the earlier literature on dynamic tournaments (Rosen, 1986; Meyer,
1991, 1992) that assumes exogenous information structure and studies the optimal reward structure.
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2. The Model

We present a model of multistage promotion tournament that is described below in terms
of the following key components: players, technology, incentives and payo¤s.

players: A �rm (principal) F hires two workers (agents) A and B. Both workers are
sta¤ed in a given job.

technology: The job must be performed in two stages, intermediate and �nal.4 The
production technologies in each of the two stages of the job are identical. In each of the two
stages, both workers simultaneously choose how much e¤ort to exert. At the intermediate
stage, worker i (i 2 fA;Bg) exerts e¤ort ei 2 [0; 1] at the cost c (ei) = e2i =2. The outcome yi
of the worker�s e¤ort can either be a success (s) or a failure (f) and depends on the exerted
e¤ort, where

Pr (yi = s) = ei:

We assume that the performance of a worker in both stages is private information to the
�rm. The workers do not observe the outcome of the intermediate stage (own outcome as
well as the outcome of the other worker), but the �rm observes the outcome for both workers
perfectly. That is, F observes an element of the set Y = f(s; s) ; (s; f) ; (f; s) ; (f; f)g ; where,
for example, (s; f) corresponds to the outcome where worker A succeeds and worker B fails
at the intermediate stage. This would be the case, for example, where there are no objective
measures for the workers�performance, and the �rm uses a subjective measure to assess the
workers�output. The �rm, however, can disclose some (potentially noisy) information to the
workers at the beginning of the �nal stage. We will elaborate on the disclosure policy shortly.
At the beginning of the �nal stage, both workers observe the disclosed information. Worker

i (i 2 fA;Bg) exerts e¤ort Ei 2 [0; 1] at the cost c (Ei) = E2i =2. Similar to the intermediate
stage, a worker produces the �nal stage outcome Yi 2 fs; fg, where

Pr (Yi = s) = Ei.

We also assume that at both stages the levels of e¤ort are unobservable. Note that the
performances of the two workers at both stages are statistically independent of each other.

Incentives and disclosure policy: The �rm would like to induce the workers to
exert e¤ort in both stages of the job. But pay-per-performance contracts are not feasible in
this environment since the worker�s performance is private information to the �rm: the �rm
always has an incentive to report low performance in order to save on the wage payment.
However, the �rm can credibly o¤er a promotion tournament, because the promotion decision
is publicly observed.5 Namely, the �rm can commit to promote one of the two workers� the

4The technology speci�cation extends the model of Lizzeri et al. (2002) to a tournament setting.
5This idea is due to Carmichael (1983a,b) and Malcomson (1984, 1986): when the workers�performance is

�rm�s private information, a tournament contract can serve as a credible incentive device, whereas pay-per-
performance contracts lack credibility. However, it is important to note that in a repeated game, promotion
tournament need not be the only incentive mechanism available to the �rm. In a repeated game setting, the
�rm can o¤er relational contracts promising bonus payments to reward good performance. Such contracts can
be sustained as an equilibrium of the repeated game and provide work incentives, although they must imply
surplus destruction even on the equilibrium path (see MacLeod, 2003, and Fuchs, 2007). In our model, we do
not consider repeated interactions between the �rm and the workers, and hence, rule out relational contracts
in order to focus on the incentive role of information feedback.
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one with the highest number of successes over the two stages� to a new job at the end of the
game.
In order to focus on the incentive implications of the information feedback, we assume that

the rewards of the winner and the loser of the promotion tournament are exogenously �xed.6

The worker who �wins� the tournament (by scoring the most number of successes over the
two stages) gets promoted and earns an exogenously speci�ed reward (or the wage o¤ered in
the new job) of 1, while the other worker (the one with the lower number of successes among
the two) �loses�the tournament and earns 0. We assume that in case of a tie, each worker is
equally likely to be promoted.7 In addition, the �rm can o¤er lump-sum wages WA and WB

to workers A and B at the beginning of the game. We assume that the workers are liquidity
constrained, i.e., Wi � 0, for i = A; B.
Note that in this environment, even if the �rm cannot manipulate the tournament�s re-

wards, the �rm can sharpen incentives by strategically disclosing the information about the
intermediate-stage outcome to the workers. The information about the intermediate outcome
can a¤ect how much e¤ort the workers exert at the �nal stage, and therefore, their equilib-
rium behavior at the intermediate stage as well. The information disclosure mechanism is
de�ned as follows.
At the beginning of the game, F commits to a disclosure policy (Z; �) that maps the

intermediate outcome of both workers, (yA; yB), into a set of public signals Z according to
the function � : Y ! �Z. In other words, at the end of the intermediate stage, depending on
the output pair (yA; yB), a public signal z 2 Z is realized that is drawn from the probability
function � (z j yA; yB). In what follows, we will denote � (z j yA; yB) by �yAyB (z).
Note that the disclosure policy de�ned above is completely general in its form. As special

cases, it includes no disclosure (the �rm sends the same signal regardless of the realized out-
come), full disclosure (there is a one-to-one correspondence between intermediate outcomes
and the signals that are disclosed following these outcomes), and all other deterministic dis-
closure policies (such that the probability distributions �yAyB (z) are degenerate). Moreover,
it also allows the �rm to introduce some noise to its report by randomizing over multiple
signals using a pre-speci�ed probability distribution.

Payoffs: We assume that both the workers and the �rm are risk neutral. The expected
payo¤ of worker i is

Ui (Wi; e;E) =

Wi + Pr (i wins j e;E) + 1
2 Pr (tie j e;E)�

1
2e
2
i �

P
(yA;yB)2Y

Pr (yA; yB)
R
Z

1
2Ei (z)

2 d�yAyB ;

where e = (eA; eB) and E = fEA(z); EB(z)g. That is, the payo¤ of a worker is equal to the
expected reward he earns at the end of the tournament net of his expected cost of e¤ort in
both stages. We assume that the outside option of a worker is 0.
The �rm�s payo¤, �, is the expected e¤ort exerted by the workers A and B in the two

stages of production net of the wage payments8, i.e.

6In the Appendix, we present a slightly modi�ed version of this model to motivate our assumption of
the in�exible tournament reward structure. The key idea is that the reward structure can be perceived as
market determined (and hence, exogenous to the �rm), the market inferring the workers�productivity from
the promotion decision (a la Waldman, 1984). Also see Section 5 for further discussion on the robustness of
our �ndings to alternative reward structures.

7We consider alternative tie-breaking rules in Section 5.
8One way to interpret this formulation of the �rm�s payo¤ is to assume that the �rm�s pro�t is determin-

istically governed by the level of e¤ort put in by the two workers, and the outcome of each stage fs; fg is a
signal of the workers�e¤ort and does not a¤ect the �rm�s bottom line by itself. Alternatively, one can assume
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� = eA + eB +
X

(yA;yB)2Y
Pr (yA; yB)

Z
Z

(EA (z) + EB (z)) d�yAyB �WA �WB:

Time Line. The timing in the game is as follows.
� Beginning of Period 1. F publicly announces wages WA, WB and disclosure policy
(Z; �) : Workers decide whether to accept the contract.

� Period 1.1. Each worker i (i = A;B) chooses the intermediate-stage e¤ort (ei). The
e¤ort choice is simultaneous.

� Period 1.2. Intermediate-stage outcome (yA; yB) is realized. F observes (yA; yB)
and discloses a public signal z according to the disclosure policy.

� Period 1.3. Each worker i (i = A;B) observes z and chooses the �nal-stage e¤ort
(Ei). The e¤ort choice is simultaneous.

� End of Period 1. Final-stage outcome (YA; YB) is realized. F aggregates the outcome
for each worker over the two stages and the winner of the promotion tournament is
announced. Wages (Wi) and the tournament rewards are paid and the game ends.

Strategies and equilibrium concept: The strategy of F is to choose wages (WA;WB)
and a disclosure policy (Z; �) at the beginning of the game. A worker�s strategy has three
components: (i) acceptance or rejection of the �rm�s contract, (ii) the choice of intermediate-
stage e¤ort level, ei, and (iii) the choice of �nal-stage e¤ort level, Ei (z), given the realized
signal. We use the perfect Bayesian equilibrium (PBE) as the solution concept.

3. Optimal effort

In order to derive the optimal disclosure policy, the �rst step is to characterize the optimal
e¤ort levels exerted by the workers for a given disclosure policy. This section discusses such
characterization.

3.1. Best-response e¤ort choices. Because a disclosure policy a¤ects both pre- and post-
disclosure e¤ort incentives of the workers, we solve for the optimal e¤ort for a given disclosure
policy through backward induction. Fix a disclosure policy (Z; �). Given a disclosed signal
z 2 Z, worker i�s choice of the �nal-stage e¤ort, E�i (z), maximizes his probability of winning
the tournament conditional on z net of the cost of �nal-stage e¤ort. That is,

(1) E�i (z) = arg max
Êi2[0;1]

Pr
�
i wins j Êi; ei; E�j ; z

�
+
1

2
Pr
�
tie j Êi; ei; E�j ; z

�
� 1
2
Ê2i :

The �rst-order conditions with respect to EA(z) and EB(z) can be written as:9

(2) EA(z) = EA (EB; eA; z) and EB(z) = EB (EA; eB; z) :

Denote the solution to (2) by E� (z) = fE�A (z) ; E�B (z)g. The expression for E�(z) is given
by equations (Final) in the Appendix.
The intermediate-stage e¤ort choice of a worker, ei, maximizes his probability of winning

the tournament, given the disclosure policy, the strategy of the opponent and the �nal-stage
e¤ort choices of the two workers, E�:

that the �rm earns �xed payo¤s from each success and failure by the two workers over the two periods and
maximizes its expected payo¤.

9The second-order conditions hold for both agents, because Pr (i wins j z) is linear in Ei (z) and the cost
of e¤ort is convex.
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(3)

e�i = arg max
êi2[0;1]

Pr
�
i wins j E�; êi; e�j

�
+
1

2
Pr
�
tie j E�; êi; e�j

�
� 1
2
ê2i �Ez(

1

2
E�i (z)

2 j E�; êi; e�j ):

The optimal intermediate-stage e¤ort for both workers must satisfy the �rst-order conditions
associated with the above maximization problem. Because the maximand in equation (3)
depends on the �nal e¤ort choice E� (z), the �rst-order conditions with respect to eA and eB
can be written as:

(4) eA = eA (eB;E
�) and eB = eB (eA;E�) :

Denote the solution to (4) by e� = fe�A; e�Bg. The complete expression for (4) is given in the
Appendix (equations (Int)).
The following lemma shows that for any given disclosure policy, there always exists an

equilibrium of the tournament subgame where the e¤ort levels are characterized by the �rst-
order conditions (2) and (4).

Lemma 1. Given any disclosure policy (Z; �), there exists a PBE of the subgame played by
the two workers that is induced by (Z; �), where the equilibrium levels of e¤ort are equal to
fe�;E� (z)g. Moreover, in equilibrium, the constraints 0 � ei � 1 and 0 � Ei (z) � 1 do not
bind for any i 2 fA;Bg and z 2 Z.

In the next section, we solve for the optimal disclosure policy of the �rm.

4. Optimal Disclosure Policy

The �rm�s problem is to choose the wages WA, WB and a disclosure policy (Z; �) that
maximize the expected pro�t over the two stages subject to the following constraints: (i)
incentive compatibility (IC): a disclosure policy induces an e¤ort pro�le fe�;E� (z)g that is
a PBE of the game played by the two workers; (ii) individual rationality (IR): the expected
payo¤ of a worker from accepting the �rm contract is no less than his outside option, 0; (iii)
liquidity constraint (LC): Wi � 0. The �rm�s problem is:

maxWA;WB ;(Z;�) �

s:t: fe�;E� (z)g is a PBE of the game induced by (Z; �) where (IC)
� is a probability function on Z 8 (yA; yB) 2 Y;

Ui (Wi; e
�
i ; E

�
i (�)) � 0 for i 2 fA;Bg ; (IR)

Wi � 0 for i 2 fA;Bg : (LC)

The following lemma simpli�es the �rm�s problem by showing that the (IR) constraint is
always satis�ed.

Lemma 2. Given any Wi � 0 and an arbitrary disclosure policy (Z; �), the payo¤ to a worker
at the PBE e¤ort levels fe�;E� (z)g induced by (Z; �) is always non-negative.
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The argument behind this lemma is straightforward, and we omit the formal proof. The
promotion tournament o¤ers a non-negative reward to all participants. Hence, even ifWi = 0,
the worker can always guarantee a payo¤ of 0 by accepting the contract and not exerting any
e¤ort. So, as a part of a PBE, fe�;E� (z)g must ensure a non-negative payo¤ to the workers.
This lemma has two implications: (i) If an e¤ort pro�le fe�;E� (z)g is a PBE of the game

played by the two workers, it must also satisfy the (IR) constraints for both workers even
when WA =WB = 0. (ii) The (LC) constraint always binds, because the worker will always
accept the o¤er even when Wi = 0.
Given these two observations, the �rm�s problem can be simpli�ed as follows:

P

8><>:
max(Z;�) � = e�A + e

�
B +

P
(yA;yB)2Y

Pr (yA; yB)
R
(E�A (z) + E

�
B (z)) d�yAyB (z)

s:t: (IC):

The key technical challenge in solving the program P is that the set of feasible disclosure
policies (Z; �) is large, because Z can be an arbitrarily (potentially in�nitely) large set of
signals.10

We proceed in two steps. First, we restrict attention to a special class of disclosure policies,
namely, symmetric and deterministic policies. Intuitively, a symmetric and deterministic
disclosure policy is one that is invariant to permutations of the workers�identities, and maps
each intermediate stage outcome into a unique signal. Under these policies, the cardinality
of the set of signals does not pose any problem.
Second, we verify that the optimal disclosure policy in the class of symmetric and deter-

ministic policies is indeed optimal in the general class of policies. To do so, we show that
without loss of generality, one can bound the cardinality of Z so that the problem becomes
tractable, at least by numerical methods.

4.1. Symmetric and deterministic disclosure policies. A disclosure policy (Z; �) is
said to be deterministic if it maps every outcome into a unique signal. That is, for any
(yA; yB) 2 Y; there exists a signal z 2 Z such that �yA;yB (z) = 1. A disclosure policy is said
to be symmetric if for any signal z 2 Z there exists another signal z0 2 Z (potentially, but
not necessarily distinct from z) such that � (z j yA; yB) = � (z0 j yB; yA) for all yA 2 fs; fg
and yB 2 fs; fg.11 That is, a symmetric disclosure policy treats the workers symmetrically
ex ante: the �noise�in the disclosed information depends only on the relative performances
of the workers, and not on the workers�identities.
Apart from simplifying the problem, there are two additional reasons for focusing on this

class of policies. First, it is more realistic: it is perhaps more di¢ cult for the �rm to commit
to a randomization mechanism over the signals. Also, symmetry implies that the �rm is not
biased towards any particular worker while choosing the level of noise it adds to its interim
feedback. Second, it allows us to present an exposition of the trade-o¤ between the e¤ort
levels in the two stages, and highlight the intuition behind the main result of the paper� the
optimality of partial disclosure.

10Because the �rm can observe only four events after the intermediate stage, we can restrict attention to
disclosure policies with at most four signals if we assume that the �rm cannot randomize. However, the �rm
might want to add some noise to the signal it sends, and if it is allowed to do that, it might want to choose a
stochastic disclosure policy that assigns positive probability on more than four signals. Moreover, if the �rm
is allowed to randomize, it is not a priori obvious that we can restrict attention to disclosure policies with a
�nite number of signals.

11It is important to allow for the possibility that z0 can be distinct from z, because requiring z0 = z would
rule out some interesting disclosure policies (e.g. full disclosure).
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There are seven policies in this class: (i) full disclosure, (ii) no disclosure, (iii) disclosing
only if both succeed, (iv) disclosing only if both fail, (v) disclosing whether the scores are the
same or not, (vi) disclosing whether the scores are the same, and if they are the same, whether
both succeed or fail, and �nally, (vii) disclosing who is the leader if the scores are di¤erent.
The optimal disclosure policy is the one that induces the maximal expected aggregate e¤ort
over the two stages. Comparison of these policies leads to the following proposition:

Proposition 1. The optimal disclosure policy in the class of symmetric deterministic dis-
closure policies is to �disclose only if both fail.�That is, the optimal disclosure policy is:

Z = fz1; z2g , where �ff (z1) = 1 and �sf (z2) = �fs (z2) = �ss (z2) = 1:

Proposition 1 shows that the optimal disclosure policy uses two signals: one signal (z1) is
revealed if both workers fail at the intermediate stage, and the other signal (z2) is revealed
for all other outcomes at the intermediate stage.
To explain the intuition for this result, let us �rst consider the e¤ect of disclosure policy

on the �nal-stage e¤ort (the ex-post e¤ect) and on the intermediate-stage e¤ort (the strategic
e¤ect) individually. Then we can analyze the interplay between the two e¤ects and explain
why the policy �disclose only if both fail�is optimal.
First, consider the ex-post e¤ect of disclosure policy. To isolate this e¤ect, we will assume

that the intermediate-stage e¤orts are exogenous and equal to e. The �rst-order conditions
(equations (Final) in the Appendix) imply that the total �nal-stage e¤ort following any
signal z, EA (z) + EB(z), decreases in the probability (conditional on z and e) that one of
the workers is leading the race after the intermediate stage and increases in the probability
(conditional on z and e) that the scores are even.12 This suggests that, in order to achieve
high aggregate �nal-stage e¤ort, the disclosure policy should �nd the optimal balance between
the tendency to reveal the fact the scores are even and the tendency to conceal the fact that
the scores are uneven.
If the intermediate-stage e¤orts are exogenous and equal, all symmetric deterministic dis-

closure policies except for �full disclosure�result in the same expected aggregate e¤ort. One
way to understand this conclusion is to note that, for any disclosure policy in this class, the
workers behave identically after any signal, since their beliefs about their relative positions
are symmetric. Therefore the model becomes similar to a twice-replicated model with one
worker. For such a model, one can prove that the expected marginal bene�t of e¤ort at the
�nal stage and hence the expected �nal-stage e¤ort is independent of the disclosure policy
(see Lemma 1 in Lizzeri et al. (2002)).
Therefore, all symmetric deterministic disclosure policies except �full disclosure�result in

the same expected aggregate e¤ort, and the question of choosing the optimal policy boils
down to the choice between �full disclosure�and any policy other than �full disclosure�,
such as �disclosing whether the score is even�. The di¤erence between these two policies is
that under �full disclosure�, when one of the workers is ahead after the �rst stage, the �rm
announces the identity of the winner whereas �disclosing whether the score is even�policy
only informs the workers that the scores are uneven. Here, it is better to let the workers
know the identity of the �rst-stage winner: the worker who knows for sure that he is leading
will exert less e¤ort than the one who knows he is behind, but the average of their e¤orts
will be higher than the e¤ort of a worker who knows the standing is uneven, but does not
know who is leading. Therefore, �full disclosure� is optimal if there are no strategic e¤ects
of disclosure.

12This is a common feature of tournament models (see Lazear and Rosen, 1981; Rosen, 1986) and patent
race games (see, e.g., Fudenberg et al.,1983, and Harris and Vickers, 1987).
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Next, let us consider the strategic e¤ect of a disclosure policy. The �rst-order conditions
for workers A and B with respect to their intermediate stage e¤orts are given by equation
(4)). These conditions can be written as

(5)
eB(u

ss
A � u

fs
A ) + (1� eB) (u

sf
A � uffA ) = eA;

eA(u
ss
B � u

sf
B ) + (1� eA) (u

fs
B � uffB ) = eB;

where ukli is the expected payo¤ of worker i at the �nal stage if the intermediate outcome is
(yA = k; yB = l).13 In a symmetric equilibrium, ussA �u

fs
A = ussB �u

sf
B , u

sf
A �u

ff
A = ufsB �u

ff
B ,

and one obtains

(6) eA = eB =
usfA � uffA

1 + (usfA � uffA )� (ussA � u
fs
A )
:

So, in equilibrium, the intermediate-stage e¤ort increases in the marginal bene�t of e¤ort
when the opponent succeeds (i.e. ussA � u

fs
A ) as well as in the marginal bene�t of e¤ort when

the opponent fails (i.e. usfA � uffA ).
The optimal disclosure policy arises as a result of the interplay between the strategic and

ex-post e¤ects. If the intermediate-stage e¤orts are exogenously �xed at e, it is easy to verify
that the expected �nal-stage e¤ort under any symmetric deterministic disclosure policy is
a decreasing function of e for e < 0:5.14 This suggests that the �rm may face a trade-o¤
between the strategic and ex-post e¤ects: higher value of intermediate-stage e¤ort will lead
to higher probability of intermediate-stage success, which may decrease expected �nal-stage
e¤ort. This trade-o¤ stems from the fact that policies that lead to high expected �nal-stage
e¤ort may a¤ect the marginal gains in the �nal-stage expected payo¤s, ussA�u

fs
A and usfA �u

ff
A ,

so as to dampen the intermediate-stage e¤ort incentives.
For example, let us contrast the policies of �no disclosure� and �disclose only if both

succeed�. As established above, if the intermediate-stage e¤orts under these policies were
the same, the expected �nal-stage e¤orts would be the same as well. These two policies,
however, a¤ect the intermediate-stage e¤ort incentives di¤erently. Under the �no disclosure�
policy the two stages are symmetric from the worker�s point of view, therefore the e¤ort is
the same at both stages. In particular, usfA � uffA = ussA � u

fs
A = 0:38, so equation (6) yields

eA = eB = 0:38. Under the �disclose only if both succeed�policy, the gain in �nal stage payo¤
when the opponent fails, usfA � u

ff
A , is slightly increased relative to �no disclosure�; however,

the gain when the opponent succeeds, ussA � u
fs
A , is signi�cantly reduced. This is because

succeeding if the opponent succeeds results in intense �nal stage competition, and, thus,
relatively low expected �nal stage payo¤. Therefore, in equilibrium, the marginal bene�t of
e¤ort is lower than under the �no disclosure�policy, resulting in eA = eB = 0:363.
Now we can compare the total e¤ort under the two policies. As noted above, the expected

�nal-stage e¤ort is a decreasing function of the probability of intermediate-stage success.
Therefore, lower intermediate-stage e¤ort under �disclose only if both succeed� results in
lower probability of success at the intermediate stage and thus higher expected �nal-stage
e¤ort. Indeed, under the �disclosure only if both succeed�policy, when both workers have
succeeded, the race is revealed as tied, and both workers choose a high �nal-stage e¤ort level
of 0:5; when the workers know that at least one of them has failed, then both workers reduce

13For example, ussA =
P

z[
1
2
EAEB +EA (1� EB)+ 1

2
(1� EA) (1� EB)� 1

2
E2
A]�ss (z). See equation (Int)

in the Appendix for the expanded expression for (4).
14The �nal stage e¤ort equals 1

2
� 2

5
e+ 2

5
e2 for �full disclosure�and 1

2
(1� e+ e2) for all the other policies.
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their �nal-stage e¤ort to 0:367. The resulting expected �nal-stage e¤ort equals 0:39, versus
0:38 under �no disclosure.� However, the increase in the expected �nal-stage e¤ort under
�disclose only if both succeed�is not enough to outweigh the negative strategic e¤ect of this
policy, and the total e¤ort is lower than under �no disclosure.�
The optimality of the �disclose only if both fail�policy stems from the trade-o¤ discussed

above. This policy, similar to the policy �disclose only if both succeed,� induces intense
competition by revealing information when the race is tied at yA = yB = f and obscures
the information about an uneven race by pooling these cases with the tied outcome yA =
yB = s. As a result, this policy leads to a very high marginal bene�t of intermediate e¤ort
if the opponent fails (i.e., usfA � uffA ). Indeed, failing if the opponent fails leads to intense
�nal-stage competition, which results in low expected �nal-stage payo¤. At the same time,
the marginal bene�t of intermediate e¤ort if the opponent succeeds (i.e., ussA � u

fs
A ) is also

relatively high. Succeeding if the opponent succeeds increases the likelihood of winning
the tournament without engaging in an intense competition at the �nal stage.15 In e¤ect,
this policy punishes a worker for a lack of intermediate-stage e¤ort by engaging him in an
intense competition when both workers fail, and rewards the intermediate-stage e¤ort by
pooling the rest of the outcomes in just one message and thus making the �nal-stage race
less competitive. Consequently, the �disclose only if both fail�policy enhances the marginal
bene�t of intermediate e¤ort, leading to a high value of eA and eB: equation (6) yields
eA = eB = 0:433.
This policy, however, depresses the expected �nal-stage e¤ort by reducing the probability

that a tied race will be observed at the �nal stage. Because the intermediate e¤orts are high,
it is less likely that both workers will fail, which is the only event where the workers learn
that the race is tied, and hence, work intensely at the �nal stage. However, since the uneven
race outcomes are pooled with the tied race outcome yA = yB = s, this policy continues to
induce moderate e¤ort levels even when the workers do not get any information about the
intermediate outcome. As a result, the aggregate �nal expected e¤ort E (EA (z) + EB (z))
reduces marginally (compared to the �no disclosure�case), whereas the intermediate e¤ort
increases signi�cantly. These two e¤ects taken together lead to a high aggregate e¤ort.16

It turns out that the �disclose only if both fail�policy remains optimal even in the gen-
eral class of disclosure policies. But before discussing such generalization, we highlight the
implications of this �nding.

4.1.1. Implications of the optimal disclosure policy. Proposition 1 implies that in our model
it is in the interest of the �rm neither to disclose the information about the intermediate
performance fully, nor to conceal it entirely. Partial disclosure of performance feedback is a
well-documented phenomenon: in hierarchical organizations, while rating the performance of
their subordinates, supervisors often tend to use a coarse grading scale (Beer, 1990; Murphy,
1990; MacLeod, 2003). It is argued that such coarse grading� often referred to as �grade
compression�� stems from the fact that supervisors face a substantial risk of straining their
relationship with their subordinates if they provide harsh feedback (Beer, 1990; MacLeod,
2003). Our result suggests that partial disclosure can also occur in a dynamic tournament.

15Note that this feature is in sharp contrast with the �disclose only if both succeed� policy, where the
likelihood of an intense competition in the �nal stage increases when both workers exert higher levels of
intermediate e¤ort.

16Similar reasoning suggests why the �disclose whether the score is even� policy is suboptimal. At the
�nal stage, the workers compete intensively after they get the signal that their score is even. So this policy
induces high e¤ort at the �nal stage. However, at the intermediate stage, an increase in e¤ort increases the
probability of the outcome where both succeed, which leads to intense competition at the �nal stage. For that
reason, this policy is dominated by the �disclose only if both fail�policy in terms of total e¤ort, even though
it generates higher e¤ort at the �nal stage.
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However, rather than from the risk of straining relationship, it arises as a best response of
the �rm in order to resolve the trade-o¤ between pre- and post-disclosure e¤ort incentives.
This result is in contrast with the recent paper by Aoyagi (2010), which shows that one of

the �extreme�disclosure policies of full disclosure or no disclosure is always optimal. Therefore,
it is important to draw out the factors that lead to this di¤erence in �ndings. The key
assumptions made by Aoyagi that di¤erentiate his model from ours are: (i) a continuum
of possible realizations of output at each stage; (ii) at each stage the �rm can observe only
the di¤erence between the individual outputs and not their levels (in our model, that would
translate into the assumption that the principal cannot distinguish between both agents
succeeding and both failing); (iii) the di¤erence in outputs at each stage is linear in the
di¤erence in e¤orts at that stage.
Aoyagi �nds that the optimal disclosure policy is highly sensitive to the curvature of the

workers�marginal cost of e¤ort. If the marginal cost is convex, full disclosure is optimal in
the class of all disclosure policies that have a symmetric equilibrium. If the marginal cost is
concave, no disclosure is optimal, and if the cost function is quadratic (as it is assumed in
our model), all disclosure policies induce the same expected e¤ort. These results stem from
the fact that the di¤erence in outputs in each stage is linear in the di¤erence in e¤orts. As a
consequence, after any signal, both workers choose the same e¤ort at the second stage. These
e¤orts always cancel each other out, so it follows that the expected marginal bene�t from
increasing the e¤ort at the second stage is the same for any disclosure policy. So the Jensen
inequality implies that the expected �nal-stage e¤ort is maximized by the no disclosure policy
if the marginal cost of e¤ort is convex, and by the full disclosure policy if the marginal cost
is concave. Furthermore, it can be shown that the intermediate-stage e¤ort is independent
of the disclosure policy.
In contrast, in our model, e¤ort a¤ects the outcome distribution in a non-linear fashion.

Moreover, the �rm observes the intermediate-stage outputs of the workers and not just the
di¤erence between them. Consequently, the workers need not choose the same level of e¤ort
at the �nal stage, and the intermediate-stage e¤orts also vary with the �rm�s choice of the
disclosure policy. Thus, Aoyagi�s �ndings do not apply to our setting. Moreover, in contrast
with Aoyagi (and also Ederer, 2010), we show that the disclosure policy of the �rm does have
an impact on the �rm�s payo¤ even when the workers�cost function is quadratic. In fact, in
our model the optimal policy does not critically hinge on the curvature of the workers�cost
function.17

Finally, our result suggests that conditioning the disclosure policy only on the di¤erence
between the workers�outputs (Yildirim, 2005; Aoyagi, 2010; Ederer, 2010) and/or imposing
an a priori restriction by considering only the extreme policies of full disclosure or no dis-
closure (Lizzeri, et al., 2002; Ederer, 2010) may imply a loss of generality. The �rm can be
strictly better o¤ by committing to a partial disclosure policy that is more nuanced than the
extreme policies.
In the following subsection, we extend our analysis to include all feasible disclosure policies

(not only symmetric and deterministic) and search for the optimal policy.

4.2. General disclosure policies. It is not obvious that the restriction to the class of
symmetric and deterministic disclosure policy is without loss of generality. For example, it
is not clear at the outset whether it is optimal for the �rm to treat the workers the same
way or to choose an asymmetric disclosure policy that favors one worker over another. An
asymmetric policy may induce an asymmetric equilibrium where one worker exerts much

17As a suggestive evidence, we numerically solved the for the optimal policy under a more general cost
function e
=
. We took 
 2 [1:5; 5] and found that the �disclose only if both fail�policy remains optimal for
any such cost function.
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higher e¤ort compared to the other worker, but the total e¤ort is higher than the e¤ort
obtained under any symmetric policy. However, as we discuss below, the �disclose only if
both fail�policy remains optimal even if more general disclosure policies are allowed.
In order to show this, we need to ensure that the general problem P is amenable to the

standard optimization tools. As a �rst step, this requires bounding the number of signals to
be used for disclosure. The following proposition is useful to overcome this problem.

Proposition 2. Consider a two-stage tournament with n competitors and k possible outcomes
of the tournament at the intermediate stage. Then, if an optimal disclosure policy exists, there
exists an optimal disclosure policy where jZj � n+ k:

Proposition 2 asserts that in our model with two workers and four intermediate outcomes
(fs; sg ; fs; fg ; ff; sg ; ff; fg) one can restrict attention to the class of disclosure policies that
maps the workers�performances into a set of signals that contains at most six elements. Thus
the cardinality of the set of signals can be bounded from above so that the solution to the
program P is tractable.18
Now, consider the problem P. By Proposition 2, we can take Z = f1; 2; :::; 6g without loss

of generality. This leaves us with the (IC) constraints and the condition that � must be a
probability function on Z for all (yA; yB) 2 Y:

(7) 8 i; j 2 fs; fg ,
6X
z=1

�ij (z) = 1 and �ij (z) � 0 8z:

The �rm�s problem can now be written as:

P 0

8>><>>:
max

e; f�(z);E(z)g6z=1
eA + eB +

P
(yA;yB)2Y

Pr (yA; yB)
6P
z=1

�
(EA (z) + EB (z)) �yAyB (z)

	
s:t: (2) , (4) , and (7) .

While Proposition 2 allows us to reduce the �rm�s problem to a tractable form given by P 0
,

we still cannot apply the analytical optimization methods for �nding the global maximum.
This is due to the fact that the objective function is not concave in its arguments (after
substituting in the expressions for EA(z) and EB(z) using (2), and writing the objective
function as a function of (eA; eB; f� (z)g6z=1)). Thus, even if one can apply the standard
optimization techniques to solve P 0

, it need not be the case that the solution obtained is a
global maximum.

18The idea of the proof of Proposition 2 is as follows. Note that the only way the disclosure policy enters
both the objective function and the constraints in the �rm�s problem P is through the expected value of the
workers� e¤ort level. However, if a probability distribution on some set has a certain expected value, it is
possible to �nd another probability distribution on this set with the same expected value that assigns positive
probabilities only to a �nite number of mass points. Thus, we can restrict Z to be a �nite set without any loss
of generality. But one can further bound the cardinality of the set Z. Suppose the optimal disclosure policy
is (Z�; ��) and implements a pro�le of e¤ort levels fe�;E�g. If so, then (Z�; ��) must also be a solution to an
auxiliary problem of maximizing the �rm�s payo¤ by choosing a disclosure policy among the class of policies
that implements fe�;E�g. Such an auxiliary problem can be formulated as a linear programming problem
with n + k nonnegativity constraints. The bound on Z� follows from determining the maximum number of
choice variables in this problem that can take nonzero values at a corner solution.
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Confronting this issue, we solve the program by numerical methods.19 We �nd that the
highest total e¤ort under any disclosure policy is 1.621, which is the same as the total e¤ort
under optimal symmetric deterministic policy �disclose only if both fail.�This observation
suggests that the policy �disclose only if both fail�is indeed optimal even in the most general
class of disclosure policies.

5. Discussion

In this section we discuss the robustness of our �ndings to alternative modeling speci�ca-
tions. In particular, we explore whether the optimal disclosure policy is robust to variation
in the size of the tournament rewards and alternative (asymmetric) tie-breaking rules. We
also check whether the numerical optimization result of the previous section continues to hold
with alternative production technologies. We discuss the role of the assumption that the �rm
can commit to a disclosure policy, and �nally, explore the role of private disclosure policy in
our model.

5.1. Robustness to variations in the tournament rewards. In the current version of
the model, the �rm cannot in�uence the post-promotion wages of the worker. However,
whether the proposed disclosure policy is robust to a joint optimization over wages and
feedback remains an interesting question. To address this issue, we depart from our model
and assume that at the beginning of the tournament, the �rm chooses the size of a reward
pool, say V , and commits to allocate the reward between the winner and the loser.
Clearly, if V is su¢ ciently large, then by promising V to the winner and 0 to the loser,

the �rm can always implement the highest possible e¤ort levels even without any feedback.
Consequently, the question of optimal feedback becomes irrelevant. Hence, the question of
joint optimization on reward and feedback is relevant only when there is some exogenous
upper bound on the size of reward that the �rm can o¤er. But even under this condition, one
may expect the �disclose only if both fail�policy to remain optimal. Recall that the basic
intuition behind the optimality of this policy is that it o¤ers incentives at the intermediate
stage without muting the �nal-stage incentives. At the intermediate stage, a success is
rewarded since a successful worker is never made to face a sti¤ competition at the �nal stage,
and failure is punished since a failed worker may face an intense race at the �nal stage. This
argument does not hinge on the size of the reward.

19The technical details about the numerical optimization method are as follows. First, we substitute the
expressions for EA and EB in the �rm�s objective function to rewrite the optimization problem as a problem
of choosing twenty-six variables (two intermediate e¤ort levels (eA; eB), and twenty-four probability values
representing four probability distributions, each corresponding to a particular realization of (yA; yB), on the
set of signals which has cardinality of six (i.e., f�ss (z) ; �fs (z) ; �sf (z) ; �ff (z)g6z=1)), that maximizes the
expected aggregate e¤ort level subject to (4) and (7). The Matlab optimization routine we have used requires
that the initial conditions must be feasible, so it is impossible to use equation (4) as an equality constraint
(it is rarely possible to draw a tuple (eA; eB) at random that satis�es (4)). Instead, a measure of the �error�
due to not exactly satisfying constraint (4) is incorporated as a �penalty term� in the objective function.
With this modi�cation, the optimization routine can start with an arbitrary (eA; eB) value but converges at
a point that �almost�satis�es the equality constraint. More precisely, in order to solve minx f (x) such that
g (x) = c, where c is a scalar, we rewrite the problem as a �augmented�problem minx f (x) + � (g (x)� c)2,
where � is a positive real number. The term � (g (x)� c)2 represents the �penalty� for not satisfying the
equality constraint. This is always positive by construction, so the solution to the �augmented� problem
must su¢ ciently minimize this penalty. Therefore, a solution to the �augmented� problem is a reasonable
approximation of the solution to the original problem for a suitably chosen �. We have used � = 1000 for
all equality constraints in our program. The outcome of numerical optimization turned out to be highly
dependent on the initial condition, so 100 simulations were performed, with initial values of these 26 variables
drawn as a 26� 1 vector from a uniform distribution in [0; 1].
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Given the non-linearity of the system of equations in (5), a complete analytical solution of
the optimal disclosure policy is intractable for an arbitrary V: Hence, we numerically solve
for the optimal disclosure policy. Figure 1(a) plots the payo¤ of the �rm from each of the
symmetric and deterministic disclosure policies as functions of the reward pool. Indeed, the
results of numerical optimization suggest that the �disclose only if both fail�policy remains
optimal for all relevant value of V .
This modi�cation of the reward structure, however, does not allow for surplus destruction

( �money burning�). Depending on the outcome of the tournament, the �rm can �destroy�a
part of the prize pool so that neither the �rm nor any of the workers get to keep it. Indeed, if
money burning is credible, a whole array of more nuanced reward structures becomes feasible
(see, e.g., Fuchs, 2007). A complete analysis of the optimal disclosure policy with money
burning is beyond the scope of our paper. However, the trade-o¤ between the pre- and
post-disclosure e¤ort levels continues to hold even in such an environment.

Figure 1. Firm�s payo¤ from di¤erent disclosure policies as a function of winner�s reward
(panel (a)) and weight on the intermediate stage (panel (b))

5.2. Impact of alternative tie-breaking rules. Our model assumes a tie-breaking rule
where a success in the intermediate stage is given the same weight as a success in the �nal
stage. Consequently, if both workers have exactly one success, the tie is broken fairly between
the workers irrespective of the stage in which the workers were successful.
But one may ask: does �disclose only if both fail�policy continue to remain optimal even

if the �rm weighs the outcomes of the two stages di¤erently? Recall that the optimality
of the �disclose only if both fail� policy is driven by the fact that this policy can shield
a hard-working employee from future competitions but may expose a slacking worker to
an intense competition in the �nal stage. In the process, it creates work incentives in the
intermediate stage without completely blunting the �nal-stage e¤ort incentives. But this
argument continues to hold as long as there is some weight on the intermediate stage outcome.
Thus, one may expect the �disclose only if both fail�policy to remain optimal even when the
�rm weighs the outcomes of the two stages di¤erently. However, two issues remain: �rst, this
argument does not indicate that putting equal weighs on the two stages is optimal. Second,
as noted earlier, the high degree of non-linearity of the system of equations in (5) makes the
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model analytically intractable if one applies arbitrary weights on the outcomes of the two
stages.
Hence, to investigate the robustness of our result to di¤erent weighting rules, we numeri-

cally solve for the optimal disclosure policy as a function of a tie-breaking probability p that
is de�ned as follows: if worker i has one success in the intermediate stage, and worker j one
success in the �nal stage, then i wins with probability p and j wins with probability 1� p. If
both workers have two successes or zero successes, the ties are broken with equal probabili-
ties. That is, the smaller is the value of p, the less weight is given on the intermediate stage
outcome. In the symmetric tie-breaking rule, we have p = 1=2. Our numerical results shown
in Figure 2(b) suggest that while it is not optimal to set p = 1=2, for any value of p, �disclose
only if both fail�remains the optimal disclosure policy.

5.3. Alternative production technologies. We further check for the robustness of our
�nding by considering the following variation to the model. Let the production technologies
in the intermediate and the �nal stages be Pr (yi = s) = �ei and Pr (Yi = s) = �Ei, where �
2 (0; 1] is a parameter that re�ects the sensitivity of outcome with respect to the e¤ort level.
We keep all other aspects of the model unchanged. Note that we arrive at the original model
by setting � = 1. For di¤erent values of �, we obtain the �rm�s payo¤ associated with the
numerical solution of the optimization problem P 0

and compare it with the payo¤ associated
with the disclosure policy �disclose only if both fail.�Table 1 summarizes the results.

Table 1. Results of numerical optimization in the class of all feasible disclo-
sure policies

�
E¤ort under �disclose only if

both fail�policy
E¤ort under optimal policy in
general class of policies

eA + eB E (EA + EB) Aggregate e¤ort Aggregate e¤ort
1.0 0.867 0.754 1.621 1.621
0.8 0.737 0.634 1.371 1.371
0.6 0.578 0.514 1.092 1.092
0.4 0.395 0.371 0.766 0.766
0.2 0.199 0.196 0.396 0.396

For di¤erent values of �, Table 1 shows the aggregate e¤ort (and the associated levels
of intermediate-stage and expected �nal-stage e¤orts) obtained from the optimal symmetric
deterministic disclosure policy and the aggregate e¤ort associated with the optimal policy in
the general class of policies (obtained from solving P 0

numerically). Comparing the two sets
of data, it is evident that the policy �disclose only if both fail�remains optimal even if one
perturbs the model by varying the production technology through the parameter �.

5.4. Commitment to a disclosure policy. An important assumption in our model is
that the �rm can commit to a disclosure policy. If the �rm cannot commit to a disclosure
policy, then the feedback becomes �cheap talk�, and the �rm will always �nd it pro�table to
send the feedback that leads to the highest aggregate e¤ort in the �nal stage. Consequently,
in equilibrium the workers will treat the feedback as pure noise, and choose their e¤orts
independently of the signal revealed. In other words, commitment to a disclosure policy is
crucial in our setting for such policy to have any incentive implications.
The commitment assumption is a natural starting point for the study of optimal feedback

but it is a strong assumption when the performance measure is subjective. However, the
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�rm can credibly implement a disclosure policy in several ways. For example, in many
client service industries the workers can infer about their performance based on the clients�
reaction, and the �rm can control the extent of interaction between its workers and clients
(through appropriate job design) in order to �lter the information feedback.20 Similarly, in
many cases, performance feedback is based on evaluations from multiple sources (e.g., the
so-called 3600 feedback, where the worker is reviewed not only by his supervisor but also by
his subordinates). The worker may be able to cross check the feedback from the supervisor
with the information available from other sources. Consequently, there is limited scope for
the �rm to lie in its feedback. A formal analysis of the optimal disclosure policy in absence of
any commitment power is beyond the scope of our model but it remains an interesting open
question for future research.

5.5. Private feedback. Our analysis solely focuses on public disclosure policies where at
the end of the intermediate stage, both workers publicly observe the same signal. However,
private feedback policies where employees only know their evaluations and not those of their
peers are indeed common in many settings. Does the policy �disclose only if both fail�remain
optimal if private disclosure policies are feasible?
The answer to this question depends on the class of private feedback policies that the

�rm can commit to. Note that our commitment assumption becomes more tenuous in the
case of private feedback since it might be di¢ cult for a third party to verify any privately
communicated signal. If the �rm can only commit to private disclosure policies where the
worker is privately given information only on his own performance and not on that of his
competitors, then the optimal public policy �disclose only if both fail�cannot be replicated
by any private feedback policy. This class of private feedback policies contains only two
symmetric deterministic policies: (i) neither worker gets any information about his outcome
and (ii) each worker gets to know with certainty whether he has succeeded or failed in the
intermediate stage. But both of these policies are worse than �disclose only if both fail�policy.
Policy (i) is equivalent to no disclosure, and policy (ii) results in an aggregate expected e¤ort
that equals to 1:576, which is lower than the e¤ort resulting from the policy �disclose only if
both fail.�
However, if the �rm can commit to a private feedback policy that is informative of the

relative performance of the workers, then the �rm can do strictly better than the �disclose only
if both fail�policy. For example, suppose that, if a worker fails, the �rm privately informs him
of both his own and the competitor�s intermediate-stage outcome, and if a worker succeeds,
gives him no information. The total expected e¤ort under this policy is 1:622, slightly higher
than what can be implemented by the optimal public policy.21 The example above suggests
that even if the �rm can commit to private disclosure policies, partial disclosure outperforms
the extreme policies of full and no disclosure. However, a complete analytical characterization
of the optimal disclosure policy if private signals are allowed is beyond the scope of this article.

6. Conclusion

This paper o¤ers a stylized model of a multistage tournament where the workers compete
through two stages. When the �rm privately observes the workers� performances in each
stage of the tournament, the �rm faces the choice of how much information to reveal to the
workers at the interim stage in order to maximize their e¤ort incentives. We argue that
the optimal disclosure policy must resolve the following trade-o¤: the disclosure policy that

20For example, in some cases information technology �rms can choose whether to send their engineers to
the client site or to work on their own facility and ship out the �nal product. By making such a choice, the
�rm can manipulate the extent of client contact with its workers (see Loveman and O�Connell, 1996).

21The computation of optimal e¤ort is similar to the ones done in the proof of Proposition 1 in the Appendix.
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motivates the workers to exert high e¤ort at the �nal stage can dampen the incentives at the
intermediate stage.
The optimal disclosure policy in our model takes a simple form: the �rm reveals information

(without any noise) only if both workers do poorly at the intermediate stage, and does not
reveal any information otherwise. This result provides a novel justi�cation for the optimality
of partial disclosure, which is a well-documented feature of interim feedback in hierarchical
organizations. This result is also in sharp contrast with the existing literature that suggests
that one of the �extreme�policies of full disclosure and no disclosure is likely to be the optimal
policy.
The key contribution of this paper is to highlight the trade-o¤ between the pre- and post-

disclosure e¤ort incentives that leads the �rm to �lter the performance feedback it o¤ers to
its employees. But �rms o¤er performance feedback for several reasons, and enhancing work
incentives is just one of them. For example, based on the feedback, a worker can identify skills
that he needs to develop, and consequently, can undertake e¢ cient investments in human
capital (Beer, 1987). In a more general setting, the intermediate-stage outcome reveals the
worker�s ability with some noise, so that the workers also gradually learn about each others�
abilities from the feedback (Ederer, 2010). How any of these issues would in�uence the
optimal disclosure policy can be an interesting question for the future research. However,
even in such complex settings the trade-o¤ between pre- and post-disclosure incentives is
likely to play a signi�cant role in governing the �rm�s choice of the disclosure policy.

Appendix

A. Proofs omitted in the text. Before we present the proofs, it is useful to expand
on the constraints on the intermediate and �nal-stage e¤orts in the �rm�s optimization
problem P 0

. For every z 2 Z, let PyAyB (z) = Pr (yA; yB j z) be the posterior probabil-
ity of intermediate outcome (yA; yB) conditional on signal z being observed. For example,
Pr (yA = s; yB = s j z) � Pss (z), where

Pss (z) =
�ss(z)eAeB

�ss(z)eAeB + �sf (z)eA(1� eB) + �fs(z)(1� eA)eB + �ff (z)(1� eA)(1� eB)
:

The terms Psf ; Pfs and Pff are de�ned similarly.22 Then condition (1) can be rewritten as

E�i (z) =

argmaxÊi2[0;1] Êi(1� Ej(z))(Pss(z) + Pff (z)) + (Êi + (1� Êi)(1� Ej(z)))P��(z)
+1
2

h
(ÊiEj(z) + (1� Êi)(1� Ej(z)))(Pss(z) + Pff (z)) + (Ej(z)(1� Êi))P��(z)

+(Êi(1� Ej(z)))P��(z)
i
� 1

2Ê
2
i ;

where � = s if i = A and f otherwise, and � = s if i = B and f otherwise. If there exists an
interior solution to problem (1), the �rst-order conditions for this problem are:

EA (z) =
1
2Pss (z) +

1
2Psf (z)EB (z) +

1
2Pfs (z) (1� EB (z)) +

1
2Pff (z) ;

EB (z) =
1
2Pss (z) +

1
2Pfs (z)EA (z) +

1
2Psf (z) (1� EA (z)) +

1
2Pff (z) :

Solving for EA(z) and EB(z) yields:

(Final)
EA (z) =

1
2

Pss(z)+Pfs(z)+Pff (z)+
1
2(Psf (z)�Pfs(z))(Pss(z)+Psf (z)+Pff (z))

1+ 1
4(Pfs(z)�Psf (z))

2 ;

EB (z) =
1
2

Pss(z)+Psf (z)+Pff (z)+
1
2(Pfs(z)�Psf (z))(Pss(z)+Pfs(z)+Pff (z))

1+ 1
4(Pfs(z)�Psf (z))

2 :

22We suppress the eis in the notation for PyAyB (z) for the sake of expositional clarity. Also, without loss
of generality, we will consider only those signals z for which PyAyB (z) > 0.
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Note that Ei (z)s will also depend on eis through their e¤ect on PyAyB (z)s. Next, note
that if there exists an interior solution to problem (3), the �rst-order conditions (4) for the
intermediate e¤ort, eA and eB, are:23

(Int)
ei = ej

P
z
1
2 [Ei(z)Ej(z) + (Ei(z) +

1
2(1� Ei(z))) (1� Ej(z))�

1
2E

2
i (z)]�ss (z)

+ (1� ej)
P
z[1� 1

2Ej(z) (1� Ei(z))�
1
2E

2
i (z)]��� (z)

�ej
P
z

�
1
2Ei(z) (1� Ej(z))�

1
2E

2
i (z)

�
��� (z)

� (1� ej)
P
z[
1
2Ei(z)Ej(z) +

�
Ei(z) +

1
2(1� Ei(z))

�
(1� Ej(z))� 1

2E
2
i (z)]�ff (z) ;

where � = s if i = A and f otherwise, and � = s if i = B and f otherwise. Therefore, the
�rm�s problem P 0

can now be written as:

P 0

8>>><>>>:
max

fe;f�(z);E(z)g6z=1g
eA + eB +

P
(yA;yB)2Y

Pr (yA; yB)
6P
z=1

�
(EA (z) + EB (z)) �yAyB (z)

	
s:t: (Int) , (Final) , and 8 i; j 2 fs; fg ,

P6
z=1 �ij (z) = 1 where �ij (z) � 0 8z:

We now present the proofs omitted in the text.

Proof of Lemma 1. Given a disclosure policy (Z; �), we will prove that there exists a pair of
values of intermediate e¤ort levels (ei) and a pair of mappings Ei : Z ! R for i 2 fA;Bg
such that the tuple fei; Ei (z)g satis�es the conditions (Final) and (Int), and both ei and
Ei (z) are in [0; 1] for all values of z. Since problems (1) and (3) are concave, this is su¢ cient
to conclude that the tuple fei; Ei (z)g constitutes a PBE of the tournament game between
the workers. We present the proof in the following steps.

Step 1. First, we prove that 0 � Ei (z) < 1 for any z 2 Z, where Ei (z) are de�ned by
(Final). For any z 2 Z;

EA (z) = 1
2

Pss(z)+Pfs(z)+Pff (z)+
1
2(Psf (z)�Pfs(z))(Pss(z)+Psf (z)+Pff (z))

1+ 1
4(Pfs(z)�Psf (z))

2

� 1
2

�
Pss (z) + Pfs (z) + Pff (z) +

1
2 (Psf (z)� Pfs (z)) (Pss (z) + Psf (z) + Pff (z))

�
:

But recall that PyAyB is a probability distribution over the set Y: Thus, for all (yA; yB),
PyAyB 2 [0; 1], and

P
PyAyB = 1: So, each of the following terms, Pss (z) + Pfs (z) + Pff (z),

Psf (z) � Pfs (z), and Pss (z) + Psf (z) + Pff (z) are bounded above by 1. Setting each of
these three terms to 1; we obtain EA (z) � 3=4. Further note that

sign EA (z) =
sign

�
Pss (z) + Pfs (z) + Pff (z) +

1
2 (Psf (z)� Pfs (z)) (Pss (z) + Psf (z) + Pff (z))

�
:

But,

Pss (z) + Pfs (z) + Pff (z) +
1
2 (Psf (z)� Pfs (z)) (Pss (z) + Psf (z) + Pff (z)) =

(1� Psf (z)) + 1
2 (Psf (z)� Pfs (z)) (1� Pfs (z)) � 0;

where the last inequality holds as both Psf and Pfs (z) are in [0; 1] and Psf (z)+Pfs (z) � 1.
Hence, EA (z) � 0.
By similar argument, 0 � EB (z) � 3=4, 8z 2 Z.

Step 2. Next, we show that equations (Int) have a solution (eA; eB) 2 [0; 1]2 : Let fA (eA; eB)
and fB (eA; eB) denote the right-hand side of the �rst and the second equation of (Int) ;

23Note that Ei(z) also depend on ei. However, these e¤ects are zero by the envelope theorem and therefore
omitted in the equations (Int).
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respectively, where fEA (z) ; EB (z)gz2Z are considered as functions of (eA; eB) and deter-
mined by equations (Final). Both fA (eA; eB) and fB (eA; eB) are continuous. Moreover,
if (eA; eB) 2 [0; 1]2 ; then (fA (eA; eB) ; fB (eA; eB)) 2 [0; 1]2. To see this, note that we can
rewrite fA as:

fA (eA; eB) = eB
R
Kss (z) d�ss (z) + (1� eB)

R
Ksf (z) d�sf (z)� eB

R
Kfs (z) d�fs (z)

� (1� eB)
R
Kff (z) d�ff (z) ,

where we de�ne

Kss :=
1
2EAEB + EA (1� EB) +

1
2 (1� EA) (1� EB)�

1
2E

2
A

Ksf := EAEB + EA (1� EB) + (1� EA) (1� EB) + 1
2 (1� EA)EB �

1
2E

2
A

Kfs :=
1
2EA �

1
2EAEB �

1
2E

2
A

Kff := Kss (z) :

Now, using the fact that (EA (z) ; EB (z)) 2 [0; 3=4]2, we obtain Kss 2 [1=8; 5=8] ; Ksf 2
[5=8; 1], Kfs 2 [�3=64; 1=8], and Kss 2 [1=8; 5=8]. Thus, one can bound fA as follows:

fA (eA; eB) � 5eB=8 + (1� eB) + 3eB=64� (1� eB) =8 < 1;
and

fA (eA; eB) � eB=8 + 5 (1� eB) =8� eB=8� 5 (1� eB) =8 = 0:
Similarly, fB (eA; eB) 2 [0; 1] if (eA; eB) 2 [0; 1]2 : By Brouwer�s �xed-point theorem, it follows
that the function (fA; fB) : [0; 1]

2 ! [0; 1]2 has a �xed point, which de�nes equilibrium
intermediate e¤ort levels.

Proof of Proposition 1. The proof is given in the following steps:

Step 1. Observe the following.
(a) Policy (v) (�disclosing whether the score is the same or not�) generates the same

payo¤ for the �rm as policy (vi) (�disclosing whether the score is the same, and if it is
the same, whether both succeed or fail�). This is because a signal z such that �ss (z) =
�ff (z) = 1; �fs (z) = �sf (z) = 0 leads to the same �nal-stage e¤ort as a signal z0 such
that �ss (z

0) = 1; �ff (z
0) = �sf (z

0) = �fs (z
0) = 0, or a signal z00 such that �ff (z

00) = 1;
�ss (z

00) = �sf (z
00) = �fs (z

00) = 0 (namely, the �nal-stage e¤ort is 1=2 for both participants
following any of these signals). Consequently, policy (v) generates the same �nal-stage e¤orts
as policy (vi), and thus, also the lead to the same intermediate-stage e¤orts. In words, it does
not matter whether only to disclose that the score is even, or to disclose the actual outcome,
given that the score is even.
(b) policy (i) (�full disclosure�) generates the same payo¤ for the �rm as policy (vii)

(�disclosing who is the leader if the score is not the same�). The argument is the same as
above.

Step 2. Given this observation, we e¤ectively have only �ve di¤erent cases. We compute
the �rm�s payo¤ in each of these �ve cases as follows:

(i) Full disclosure: Z = fzss; zsf ; zfs; zffg ; �yAyB (zyAyB ) = 1.
Here PyAyB (zyA;yB ) = 1, so substituting into (Final) yields EA (zss) = EB (zss) = EA (zff ) =

EB (zff ) = 1=2; EA (zsf ) = EB (zfs) = 1=5, and EA (zfs) = EB (zsf ) = 2=5. Substituting
these values into (Int) we solve for the intermediate-stage e¤ort level eA = eB = 89=230 �
0:38696. Using the equilibrium value of ei, we obtain E (EA (z) + EB (z)) = 0:81022. Thus
the expected total e¤ort is 2eA + E (EA (z) + EB (z)) � 1:5841.

(ii) No disclosure: Z = fzg ; �yAyB (z) = 1.
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With no disclosure, the two stages are symmetric, so eA = eB = EA = EB = e. Sub-
stituting into (Final) and solving for e yields e = (3 �

p
5)=2. Thus, the total e¤ort is

4e = 2(3�
p
5) � 1:5279.

(iii) Disclosing only if both succeed: Z = fz1; z2g ; �ss (z1) = 1; �sf (z2) = �fs (z2) =
�ff (z2) = 1.
At the �nal stage, the e¤ort after signal z1 is EA (z1) = EB (z1) = 1=2. After sig-

nal z2; in a symmetric equilibrium the posteriors are Pss (z2) = 0; Psf (z2) = Pfs (z2) =

e (1� e) =
�
1� e2

�
; and Pff (z2) = (1� e)2 =

�
1� e2

�
. So EA (z2) = EB (z2) =

1
2 (Pss (z2) + Pfs (z2) + Pff (z2)) = 1=2 (1 + e). At the intermediate stage,

e = 3
8e+ (1� e) (1�

1
2EA (z2))� e(

1
2EA (z2)� (EA (z2))

2)� (1� e) (12 �
1
2 (EA (z2))

2)

= e(12 (EA (z2))
2 � 1

8) +
1
2 (EA (z2))

2 � 1
2EA (z2) +

1
2 :

Substituting for EA (z2) ; we get 9e3A+14e
2
A+2eA�3 = 0. The only solution that lies in [0; 1]

is e � 0:3629 (one can check that this solution for e satis�es the second-order conditions).
Thus, the expected �nal-stage e¤ort is E (EA (z) + EB (z)) = 1 � e + e2 � 0:7688. The
resulting total e¤ort is 2e+ E (EA (z) + EB (z)) � 1:4946.

(iv) Disclosing only if both fail: Z = fz1; z2g ; �ff (z1) = 1; �sf (z2) = �fs (z2) = �ss (z2) =
1.
At the �nal stage, the e¤ort after signal z1 is EA (z1) = EB (z1) = 1=2. After sig-

nal z2; in a symmetric equilibrium the posteriors are Pff (z2) = 0, Psf (z2) = Pfs (z2)

= e (1� e) =(1 � (1� e)2), Pss (z2) = e2=(1 � (1� e)2). So EA (z2) = EB (z2) = 1=2 (2� e).
At the intermediate stage,

e = e(12 �
1
2 (EA (z2))

2) + (1� e) (1� 1
2EA (z2))� e(

1
2EA (z2)� (EA (z2))

2)� 3
8 (1� e)

= e(12 (EA (z2))
2 � 1

8)�
1
2EA (z2) +

5
8 :

Substituting for EA (z2) and reorganizing yields 9e3� 41e2+53e� 16 = 0. The only solution
that lies in [0; 1] is e � 0:4333 (one can check that this solution for e satis�es the second-order
conditions). Thus, the expected �nal-stage e¤ort is E (EA (z) + EB (z)) = 1�e+e2 � 0:7544.
The resulting total e¤ort is 2e+ E (EA (z) + EB (z)) � 1:6211.

(v) Disclosing whether the score is even: Z = fz1; z2g ; �ss (z1) = �ff (z1) = 1; �sf (z2) =
�fs (z2) = 1.
After signal z1; in a symmetric equilibrium the posteriors are Pff (z1) =

(1� e)2 =(e2 + (1� e)2), Pss (z1) = e2=(e2 + (1� e)2), Psf (z1) = Pfs (z1) = 0: The �nal-
stage e¤orts after signal z1 are EA (z1) = EB (z1) = 1=2. After signal z2, in a symmetric
equilibrium the posteriors are Pff (z2) = Pss (z2) = 0; and Psf (z2) = Pfs (z2) = 1=2. The
�nal-stage e¤orts after signal z2 are EA (z2) = EB (z2) = 1=4. Substituting the values of
EAs and EBs into (Int), we can solve for e � 0:4211. Thus, the expected �nal-stage e¤ort
is E (EA (z) + EB (z)) � 0:7562, and the resulting total e¤ort is 2e + E (EA (z) + EB (z)) �
1:598.
Thus, the highest total e¤ort is obtained under the policy �disclosing only if both fail.�

Proof of Proposition 2. We will present the proof in the context of a model with n players
and k possible intermediate outcomes, y 2 fy1; :::; ykg. The proof is given in the following
steps:

Step 1. Fix a disclosure policy (Z; �). Let Zi � Z be the subset of signals that are in the
support of �yi , but not in the support of �yj for any j < i. Then fZig

n
i=1 form a partition of

Z.
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Step 2. Let us change the choice variables in the following way:
(i) For every i = 1; :::; k�1 and any z 2 Zi, given the intermediate e¤ort levels, the Bayes rule
de�nes a one-to-one correspondence between

n
�yj (z)

ok
j=1

and
�
�yi (z) ; Pyi+1 (z) ; :::; Pyk (z)

	
.

To see this, note that for any j = i+ 1; :::; k,

�yj (z) =Mji (z) �yi (z) ;

where

Mji(z) =
PyjPr(yije1; :::; en)

(1�
Pk
`=i+1 Py`)Pr(yj je1; :::; en)

;

and Pr(yije1; :::; en) is the probability of outcome yi conditional on the intermediate e¤ort
levels e1; :::; en. Note that Mji depend only on Pyj for j = i + 1; :::; k and e1; :::; en. So
for z 2 Zi the �rm can maximize with respect to

�
�yi (z) ; Pyi+1 (z) ; :::; Pyk (z)

	
instead ofn

�yj (z)
ok
j=1
.

So the �rm can change the choice variables from (Z; �) ton
Z;
�
�yi (z) ; Pyi+1 (z) ; :::; Pyk (z)

	
z2Zi;i=1;:::;k�1

;
�
�yk (z)

	
z2Zk

o
and add the constraints that Pyi (z) � 0 and

Pk
i=1 Pyi (z) = 1.

Step 3. Let �
Z�;

n
��yi (z) ; P

�
yi+1 (z) ; :::; P

�
yk
(z)
o
z2Zi;i=1;:::;k�1

;
�
��yk (z)

	
z2Zk

�
and fe�i ; E�i (z)gi=1;:::;n be an equilibrium, where Z� can be an in�nite set. Then�

Z�;
n
�yi (z) ; P

�
yi+1 (z) ; :::; P

�
yk
(z)
o
z2Zi;i=1;:::;k�1

;
�
�yk (z)

	
z2Zk

�
and fe�i ; E�i (z)gi=1;:::;n will also be an equilibrium if the �rst-order conditions for the inter-
mediate e¤ort hold, as well as the following conditions:

(A1)

Pn
i=1 e

�
i +

kP
j=1

Pr(yj je�1; :::; e�n)
R Pn

i=1E
�
i (z) d�yj (z) =Pn

i=1 e
�
i +

kP
j=1

Pr(yj je�1; :::; e�n)
R Pn

i=1E
�
i (z) d�

�
yj (z) ;

(A2) �yj (z) � 0; 8z 2 Z; j = 1; :::; k;

(A3)
Z
d�yj (z) = 1; j = 1; :::; k:

where
n
�yj (z); j = i+ 1; :::; k

o
z2Zi;i=1;:::;k�1

are functions of the rest of the variables as de-

�ned in Step 2 (the �rst-order conditions for the �nal-stage e¤ort will hold , because P �yi and
E�i are part of an equilibrium). The next step is to show that there exist distributions

�
�y
	

with a �nite support such that the �rst-order conditions for the intermediate-stage e¤ort,
(A1), (A2) and (A3) hold.

Step 4. Take the �rst-order conditions for the intermediate-stage e¤ort, (A1) and (A3)
(n+k+1 equations in total: n for the �rst-order conditions for the intermediate-stage e¤ort,
one for (A1) and k for (A3)) and divide both sides by

Pk
j=1

R
d��yj (z). The result will be
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n+ k + 1 equations with respect to the variables
n
�yj (z)

o
z2Zj

; j = 1; :::; k; that say that a

constant vector on the left-hand side lies in the convex hull of some set, the points of which
are indexed by z 2 Z. Consequently, the left-hand side of this system of equations can be
represented as a convex combination of points in this set, where the coe¢ cients of the convex
combination are of the form

1Pk
j=1

R
d��yj (z)

� (
n
�yj (z)

o
z2Zj\Z0

);

where Z 0 is a �nite subset of Z. This convex combination de�nes a probability distribution
concentrated on a �nite number of points in Z. By Caratheodory�s theorem, one can choose
such a distribution so that it puts positive probability on not more than n+ k + 2 points in
Z (since we have n+ k + 1 equations).

Step 5. Now let us prove that, without loss of generality, we can take jZj � n + k: Step
3 proves that there exists an optimal disclosure policy that puts positive probability on at
most n+ k + 2 signals in Z. Let the equilibrium generated by this optimal disclosure policy
be �

Z�;
n
��yi (z) ; P

�
yi+1 (z) ; :::; P

�
yk
(z)
o
z2Zi;i=1;:::;k�1

;
�
��yk (z)

	
z2Zk

�
and fe�i ; E�i (z)gi=1;:::;n. Then

n
�yj (z)

o
z2Zj

; j = 1; :::; k; solves

max�
Pn
i=1 e

�
i +

kP
j=1

Pr(yj je�1; :::; e�n)
R Pn

i=1E
�
i (z) d�yj (z)

subject to (A2), (A3) and the �rst-order conditions for the intermediate e¤ort. This is a
linear programming problem, and the canonical form of this problem is

max
�

c� s:t: A� = b; � � 0;

where � =
n
�yj (z)

o
z2Zj

; j = 1; :::; k, A is a (n + k) � (n + k + 2) matrix (there are n + k
constraints, n corresponding to the �rst-order conditions for the intermediate e¤ort and k to
(A3)), b 2 Rn+k, and c 2 Rn+k+2. By the Fundamental Theorem of Linear Programming
(see, e.g., Almon, 1967, p. 60), if a solution to this problem exists, then there exists a solution
where at most n+ k coordinates of � are strictly positive.

B. Justi�cation for the tournament�s exogenous reward structure. In the model
we have assumed that the reward structure of the tournament is exogenously �xed. In this
appendix, we present an extended version of our basic model where the in�exibility of the
reward structure of the tournament is derived from the model rather than simply assumed.
Suppose that the workers are ex ante identical but have �types�that govern their produc-

tivity. The type of a worker is unknown to all players at the outset of the game but after the
hiring, a worker�s �type�is revealed and becomes common knowledge for the �rm and both
workers. Types can be either �high�or �low�and a priori both types are equally likely; i.e.,
Pr (high) = 1=2.
There are two periods, 1 and 2, and two jobs� Job 1 and Job 2. In period 1, both workers,

irrespective of their types, are assigned to Job 1, which is the entry-level job. At the beginning
of period 2, a high-type worker may be promoted to job 2.24 At the beginning of period 2,
after the promotion decision is made public, the �rms in the outside labor market compete

24Even though the low-type workers are not eligible for promotion, as it will be apparent shortly, their
presence plays an important role in creating the tournament incentives for the high-type workers.
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in wages to raid (or �poach�) a worker. However, the market can only observe a worker�s job
placement but not his type.
The technology is similar to the one described in the basic model except one key di¤erence.

In period 1, only a high-type worker can have a success. The probability of success of a high-
type worker in both the intermediate and the �nal stage is equal to the e¤ort he exerts in the
respective stage (i.e., the technology assumed in the basic model). In contrast, a low-type
worker always fails in both stages.
In period 2, productivity is governed only by the type of the worker (i.e., e¤ort does

not play any role). Once a high-type worker completes the two tasks in job 1, he is more
productive in job 2. In particular, a high-type worker produces value v > 1=5 for the �rm in
job 1 and value 1 + v in job 2 (as will be made clear later, the assumption v > 1=5 simpli�es
the subsequent analysis). A high-type worker can also leave the �rm to work for another �rm
in the outside labor market. In the outside labor market, a high-type worker produces 0 in
job 1 and 1 in job 2 (so, v can be interpreted as the extent of �rm-speci�c matching). To
simplify the subsequent analysis, we assume that a low-type worker produces 0 in all jobs
with both the �rm and the outside market. The �rm can promote only one high-type worker
to job 2, giving rise to a promotion tournament when both workers turn out to be of the high
type. A low-type worker is never promoted.
Similar to the spot market contracting assumption in the promotion tournament literature

(e.g. Zábojník and Bernhardt, 2001, DeVaro and Waldman, 2007), we assume that the wages
following promotion announcement are set through an o¤er-countero¤er game. Observing the
job assignment, the outside labor market makes a wage o¤er to a worker. The �rm observes
the o¤er and decides whether to match the highest o¤er or let the worker leave for the raider.
Consequently, wages are tied to the jobs, and we denote the second-period wage for job i as
wi, i = 1; 2:
The payo¤s for the workers and the �rm are de�ned as follows. As before, the workers�

payo¤ is their expected reward from the tournament net of the cost of e¤ort (note that the
rewards of the tournament are now w1 and w2 rather than 1 and 0). The �rm�s payo¤, �, is
now the sum of its period 1 and period 2 payo¤s. The period 1 payo¤, �1, is the same as the
one de�ned in our basic model. The �rm�s period 2 expected pro�t, �2, is the productivity
of the worker in his job net of wages when the worker is retained, and 0 otherwise. So, the
payo¤ from worker i in period 2 is:

�i2 =

8>><>>:
1 + v � w2 if i is high-type and promoted to job 2
v � w1 if i is high-type and retained in job 1
�w1 if i is low-type and retained in job 1
0 otherwise

:

Hence, �2 = E
�
�A2 + �

B
2

�
and � = �1 + �2.

The strategies of the players are also de�ned accordingly. The strategy of F will now
have two components: (i) the choice of wages (WA;WB) and a disclosure policy (Z; �) at the
beginning of the game, and (ii) the choice of a countero¤er upon observing the market�s o¤er
at the beginning of period 2. A worker�s strategy now has four components: (i) acceptance
or rejection of the �rm�s o¤er, (ii) the choice of intermediate-stage e¤ort level, ei, given the
types, (iii) the choice of �nal-stage e¤ort level, Ei (z), given the types and the realized signal,
and (iv) the choice of the period 2 employer upon observing the market o¤er and the �rm�s
countero¤er. Finally, the outside labor market is assumed to be a non-strategic player that
always bids the maximum feasible wage between 0 and 1 subject to the zero-expected-pro�t
constraint given the initial employer�s strategy and the observed promotion decision.25

25This restriction is similar in spirit with the �market-Nash� re�nement proposed by Waldman (1984).
While the key economic e¤ects that we highlight in this article continue to hold even if the outside market is
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We keep all other aspects of our basic model unchanged. The following lemma characterizes
the reward structure of the promotion tournament.

Lemma 3. In any equilibrium, w1 = 0, w2 = 1 and there is no turnover.

The argument behind this lemma is as follows. The outside labor market only observes
the job assignment and not the type of the worker. Now, a worker being in job 2 necessarily
implies that he is a high type, and hence produces a value of 1 with the outside labor market.
Because the raiding �rms and the initial employer compete in wages to hire the worker, the
raiders bid the full value of the worker. The �rm �nds it optimal to match the o¤er because
by retaining the worker in job 2, the �rm makes a pro�t of v on him.
For a worker in job 1, the outside labor market cannot observe whether the worker is a

low type (and produces 0 on all jobs in the outside labor market) or a high type who has
lost in the promotion tournament (and can produce an output of value 1 if moved to job 2 in
the outside labor market). Because the initial employer observes the type of the worker, this
information asymmetry creates an adverse selection problem (see, e.g., Greenwald, 1986).
Note that the average productivity of these two types of workers in the outside labor market
(when employed in job 2) is Pr (high-type j assigned to Job 1) = 1=5.26 But, recall that with
the initial employer, in job 1, a high-type worker produces v > 1=5 and a low-type worker
produces 0. So, when the outside labor market bids the average productivity of the worker,
the �rm would always match the o¤er for a high-type worker, but not for a low-type worker.
Consequently, in equilibrium, the market would lower its bid to 0, i.e., the productivity of
the low-type worker. The �rm will match this o¤er and make a pro�t of v by retaining the
high-type worker. This e¤ect is similar to the �winner�s curse� problem in common-value
auctions (McAfee and McMillan, 1987).
Lemma 3 suggests that in this model, the reward structure of the promotion tournament

is identical to the one assumed in our basic model. So, our basic model can be conceived as a
reduced form version of the more elaborate model described above and representing the case
where both workers are revealed to be of the high type.
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